Initiation of intravitreal aflibercept injection treatment in patients with diabetic macular edema: a review of VIVID-DME and VISTA-DME data

Focke Ziemssen, Patricio G Schlottman, Jennifer I Lim, Hansjürgen Agostini, Gabriele E Lang, Francesco Bandello, Focke Ziemssen, Patricio G Schlottman, Jennifer I Lim, Hansjürgen Agostini, Gabriele E Lang, Francesco Bandello

Abstract

Background: Diabetic macular edema (DME) shows a gradual and sustained functional and morphologic response to anti-vascular endothelial growth factor (VEGF) drugs, but the optimal schedule for initiation of anti-VEGF therapy is not known. This study evaluates the treatment response behavior of DME in the Phase 3 trials of intravitreal aflibercept, with 5 initial intravitreal aflibercept injections (IAI), 2 mg every 4 weeks (2q4), in the upload phase.

Methods: This post hoc pooled analysis of the VISTA-DME (NCT01363440) and VIVID-DME (NCT01331681) trials evaluated the change in best-corrected visual acuity (BCVA) and central retinal thickness (CRT) during the upload phase, using pooled data from both IAI treatment groups [2q4 and 2 mg every 8 weeks (2q8)]. The mean visit-to-visit change in BCVA and CRT, and the respective rate of gainers and losers was calculated for each successive visit. A secondary analysis compared the visit-to-visit change in BCVA between the 2q4 and 2q8 treatment arms during the upload period and the first year treatment period.

Results: The majority of eyes showed a continuing improvement of BCVA after the first IAI. The proportions of eyes gaining BCVA (≥5 letters) at each visit compared with the previous visit during the IAI 2q4 upload phase were 60 (4-weeks), 19 (8-weeks), 16 (12-weeks), 15 (16-weeks), and 14 % (20-weeks). In contrast, the proportions of eyes losing BCVA (≥5 letters) were 3 (4-weeks), 7 (8-weeks), 7 (12-weeks), 9 (16-weeks), and 8 % (20-weeks), respectively. The odds of BCVA (≥5 letters) gain/loss exceeded 1.7 at each visit (range 1.7-20). Overall, the proportion of patients with BCVA gain ≥5 letters at week 20 (compared with baseline) was 76 and 80 % in the 2q4 and 2q8 groups, respectively. The proportions of eyes showing a visit-to-visit decrease in CRT of ≥30 µm during the first 5 IAI were 77 (4-weeks), 27 (8-weeks), 21 (12-weeks), 17 (16-weeks), and 12 % (20-weeks). In the secondary analysis, the BCVA outcomes were similar for the 2q8 and 2q4 treatment arms.

Conclusions: The data presented here are consistent with continual functional and anatomic improvement following the fourth and fifth initial 2q4 injections, suggesting that an intensive and sufficiently long upload may be beneficial. Trial registration VIVID-DME: Clinicaltrials.gov: NCT01331681; VISTA-DME: Clinicaltrials.gov: NCT01363440.

Keywords: Aflibercept; Anti-VEGF; Diabetic macular edema; Loading dose; Treatment initiation; Upload.

Figures

Fig. 1
Fig. 1
Percentage of patients who gained or lost 5 letters; change of BCVA is always compared with the previous visit (n = 576)
Fig. 2
Fig. 2
Waterfall plots of BCVA change at weeks 4, 8, and 12
Fig. 3
Fig. 3
Visit-to-visit change in CRT: percentage of patients who had a reduction or increase in CRT of ≥30 µm (n = 576)
Fig. 4
Fig. 4
Percentage of patients who gained ≥5 letters from baseline, by visit

References

    1. Heier JS, Bressler NM, Avery RL, Bakri SJ, Boyer DS, Brown DM, et al. Comparison of aflibercept, bevacizumab, and ranibizumab for treatment of diabetic macular edema: extrapolation of data to clinical practice. JAMA Ophthalmol. 2016;134:95–99. doi: 10.1001/jamaophthalmol.2015.4110.
    1. Korobelnik JF, Kleijnen J, Lang SH, Birnie R, Leadley RM, Misso K, et al. Systematic review and mixed treatment comparison of intravitreal aflibercept with other therapies for diabetic macular edema (DME) BMC Ophthalmol. 2015;15:52. doi: 10.1186/s12886-015-0035-x.
    1. Virgili G, Parravano M, Menchini F, Evans JR. Anti-vascular endothelial growth factor for diabetic macular oedema. Cochrane Database Syst Rev. 2014;10:007419.
    1. Boyer DS, Nguyen QD, Brown DM, Basu K, Ehrlich JS. Outcomes with as-needed ranibizumab after initial monthly therapy: long-term outcomes of the phase III RIDE and RISE trials. Ophthalmology. 2015;122:2504–2513. doi: 10.1016/j.ophtha.2015.08.006.
    1. Schmidt-Erfurth U, Lang GE, Holz FG, Schlingemann RO, Lanzetta P, Massin P, et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology. 2014;121:1045–1053. doi: 10.1016/j.ophtha.2013.11.041.
    1. Mitchell P, Massin P, Bressler S, Coon CD, Petrillo J, Ferreira A, et al. Three-year patient-reported visual function outcomes in diabetic macular edema managed with ranibizumab: the RESTORE extension study. Curr Med Res Opin. 2015;31:1967–1975. doi: 10.1185/03007995.2015.1081880.
    1. Pearce I, Banerjee S, Burton BJ, Chakravarthy U, Downey L, Gale RP, et al. Ranibizumab 0.5 mg for diabetic macular edema with bimonthly monitoring after a phase of initial treatment: 18-month, multicenter, phase IIIb RELIGHT study. Ophthalmology. 2015;122:1811–1819. doi: 10.1016/j.ophtha.2015.05.038.
    1. Ishibashi T, Li X, Koh A, Lai TY, Lee FL, Lee WK, et al. The REVEAL study: ranibizumab monotherapy or combined with laser versus laser monotherapy in Asian patients with diabetic macular edema. Ophthalmology. 2015;122:1402–1415. doi: 10.1016/j.ophtha.2015.02.006.
    1. Bressler SB, Glassman AR, Almukhtar T, Bressler NM, Ferris FL, Googe JM, Jr, et al. Five-year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema. Am J Ophthalmol. 2016;164:57–68. doi: 10.1016/j.ajo.2015.12.025.
    1. Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372:1193–1203. doi: 10.1056/NEJMoa1414264.
    1. Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122:2044–2052. doi: 10.1016/j.ophtha.2015.06.017.
    1. Rajendram R, Fraser-Bell S, Kaines A, Michaelides M, Hamilton RD, Esposti SD, et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol. 2012;130:972–979. doi: 10.1001/archophthalmol.2012.393.
    1. Do DV, Nguyen QD, Boyer D, Schmidt-Erfurth U, Brown DM, Vitti R, et al. One-year outcomes of the da Vinci study of VEGF trap-eye in eyes with diabetic macular edema. Ophthalmology. 2012;119:1658–1665. doi: 10.1016/j.ophtha.2012.02.010.
    1. Wells JA, Glassman AR, Jampol LM, Aiello LP, Antoszyk AN, Baker CW, et al. Association of baseline visual acuity and retinal thickness with 1-year efficacy of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema. JAMA Ophthalmol. 2016;134:127–134. doi: 10.1001/jamaophthalmol.2015.4599.
    1. Wells JA, Glassman AR, Ayala AR, Jampol LM, Bressler NM, Bressler SB, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016. [Epub ahead of print].
    1. Thomas BJ, Shienbaum G, Boyer DS, Flynn HW., Jr Evolving strategies in the management of diabetic macular edema: clinical trials and current management. Can J Ophthalmol. 2013;48:22–30. doi: 10.1016/j.jcjo.2012.11.012.
    1. Preferred practice pattern: diabetic retinopathy American Academy of Ophthalmology. American Academy of Ophthalmology web site. . Accessed 4 April 2016.
    1. Bandello F, Cunha-Vaz J, Chong NV, Lang GE, Massin P, Mitchell P, et al. New approaches for the treatment of diabetic macular oedema: recommendations by an expert panel. Eye. 2012;26:485–493. doi: 10.1038/eye.2011.337.
    1. Hooper P, Boucher MC, Colleaux K, Cruess A, Greve M, Lam WC, et al. Contemporary management of diabetic retinopathy in Canada: from guidelines to algorithm guidance. Ophthalmologica. 2014;231:2–15. doi: 10.1159/000354548.
    1. Aiello LP, Beck RW, Bressler NM, Browning DJ, Chalam KV, Davis M, et al. Rationale for the diabetic retinopathy clinical research network treatment protocol for center-involved diabetic macular edema. Ophthalmology. 2011;118:e5–e14. doi: 10.1016/j.ophtha.2011.09.058.
    1. Ziemssen F, Helbig H, Lemmen KD, Spital G, Bertram B, Hillenkamp J, et al. [Statement of the German Ophthalmological Society, the Retina Society and the Professional Association of German Ophthalmologists: treatment of diabetic maculopathy (April 2013)] Klin Monbl Augenheilkd. 2013;230:614–628. doi: 10.1055/s-0032-1328663.
    1. Deissler HL, Lang GK, Lang GE. Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells. Exp Eye Res. 2014;122:20–31. doi: 10.1016/j.exer.2014.02.024.
    1. Minami Y, Nagaoka T, Ishibazawa A, Yoshida A. Short-term effect of intravitreal ranibizumab therapy on macular edema after branch retinal vein occlusion. Retina. 2016. [Epub ahead of print].
    1. Ebneter A, Wolf S, Zinkernagel MS. Prognostic significance of foveal capillary drop-out and previous panretinal photocoagulation for diabetic macular oedema treated with ranibizumab. Br J Ophthalmol. 2016;100:365–370. doi: 10.1136/bjophthalmol-2014-306482.
    1. Korobelnik JF, Do DV, Schmidt-Erfurth U, Boyer DS, Holz FG, Heier JS, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121:2247–2254. doi: 10.1016/j.ophtha.2014.05.006.
    1. Mann DM, Ponieman D, Leventhal H, Halm EA. Predictors of adherence to diabetes medications: the role of disease and medication beliefs. J Behav Med. 2009;32:278–284. doi: 10.1007/s10865-009-9202-y.

Source: PubMed

3
Předplatit