Applications of 3D-Printed PEEK via Fused Filament Fabrication: A Systematic Review

Rupak Dua, Zuri Rashad, Joy Spears, Grace Dunn, Micaela Maxwell, Rupak Dua, Zuri Rashad, Joy Spears, Grace Dunn, Micaela Maxwell

Abstract

Polyether ether ketone (PEEK) is an organic polymer that has excellent mechanical, chemical properties and can be additively manufactured (3D-printed) with ease. The use of 3D-printed PEEK has been growing in many fields. This article systematically reviews the current status of 3D-printed PEEK that has been used in various areas, including medical, chemical, aerospace, and electronics. A search of the use of 3D-printed PEEK articles published until September 2021 in various fields was performed using various databases. After reviewing the articles, and those which matched the inclusion criteria set for this systematic review, we found that the printing of PEEK is mainly performed by fused filament fabrication (FFF) or fused deposition modeling (FDM) printers. Based on the results of this systematic review, it was concluded that PEEK is a versatile material, and 3D-printed PEEK is finding applications in numerous industries. However, most of the applications are still in the research phase. Still, given how the research on PEEK is progressing and its additive manufacturing, it will soon be commercialized for many applications in numerous industries.

Keywords: 3D printing; PEEK; additive manufacturing; aerospace; chemical; electrical; medical; polymer.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the different stages of the systematic review [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62].
Figure 2
Figure 2
Pictures showing pre-operative diagnosis, virtual surgery and creation of patient-specific implants using CAD/CAM software [26]. Reproduced with permission from Ji-hyeon Oh, Maxillofacial Plastic and Reconstructive Surgery published by Springer Nature, 2018.
Figure 3
Figure 3
Illustrations of the FFF PEEK 3D printing issues in the cranial implants regarding different orientations. (a) Horizontally printed cranial implant showing the raft detachment/warping effect (in situ); (b) horizontally printed cranial implant displaying a rough internal surface; (c) vertical printed cranial implant exhibiting different levels of crystallinity (in situ); (d) 3D-printed skull biomodel with the vertically printed implant after support structure removal; and (e) annealed vertically printed cranial implant displaying no discolorations [23]. Reproduced under the Creative Commons Attribution License permission from an open access Journal of Clinical Medicine published in 2020.
Figure 4
Figure 4
SEM photographs of extruded and drawn PEEK yarns at different magnifications. The photographs showed that the filament is cylindrical in shape with uniform diameter, has a smooth surface, and is transparent with no irregular striations on its surface [3]. Reproduced under the Creative Commons Attribution License from an open-access Journal of Clinical Medicine published in 2020.
Figure 5
Figure 5
Direct Current (DC) volume electrical conductivity of PEEK/MWCNT/GnP nanocomposites as a function of GnP (1 to 6 wt%) content (at CNT contents of 3 and 4 wt %) [22]. Reproduced under the Creative Commons Attribution License from the Journal of Applied Polymer Science published in 2009.

References

    1. Honigmann P., Sharma N., Okolo B., Popp U., Msallem B., Thieringer F.M. Patient-specific surgical implants made of 3D printed PEEK: Material, technology, and scope of surgical application. Biomed Res. Int. 2018;2018:4520636. doi: 10.1155/2018/4520636.
    1. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann. Maxillofac. Surg. 2014;4:9. doi: 10.4103/2231-0746.133065.
    1. Shekar R.I., Kotresh T.M., Rao P.M.D., Kumar K. Properties of high modulus PEEK yarns for aerospace applications. J. Appl. Polym. Sci. 2009;112:2497–2510. doi: 10.1002/app.29765.
    1. Mohiuddin M., Hoa S.V. Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites. Compos. Sci. Technol. 2013;79:42–48. doi: 10.1016/j.compscitech.2013.02.004.
    1. Liu Z., Wang L., Hou X., Wu J. Investigation on dielectrical and space charge characteristics of peek insulation used in aerospace high-voltage system. IEEJ Trans. Electr. Electron. Eng. 2020;15:172–178. doi: 10.1002/tee.23042.
    1. Han X., Sharma N., Xu Z., Scheideler L., Geis-Gerstorfer J., Rupp F., Thieringer F.M., Spintzyk S. An In Vitro Study of Osteoblast Response on Fused-Filament Fabrication 3D Printed PEEK for Dental and Cranio-Maxillofacial Implants. J. Clin. Med. 2019;8:771. doi: 10.3390/jcm8060771.
    1. Wang F., Roovers J. Functionalization of poly (aryl ether ether ketone)(PEEK): Synthesis and properties of aldehyde and carboxylic acid substituted PEEK. Macromolecules. 1993;26:5295–5302. doi: 10.1021/ma00072a004.
    1. Panayotov I.V., Orti V., Cuisinier F., Yachouh J. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 2016;27:118. doi: 10.1007/s10856-016-5731-4.
    1. Haleem A., Javaid M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: An overview. Clin. Epidemiol. Glob. Health. 2019;7:571–577. doi: 10.1016/j.cegh.2019.01.003.
    1. Tekin S., Cangül S., Adıgüzel Ö., Değer Y. Areas for use of PEEK material in dentistry. Int. Dent. Res. 2018;8:84–92. doi: 10.5577/intdentres.2018.vol8.no2.6.
    1. Berry D. Use of Victrex® PEEK™ Thermoplastic to Drive New Designs, Processing Flexibility, and Cost Reduction in Aerospace Components. SAE Trans. 2002:426–431.
    1. Menzel F., Klein T., Ziegler T., Neumaier J.M. 3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. React. Chem. Eng. 2020;5:1300–1310. doi: 10.1039/D0RE00206B.
    1. Vaezi M., Yang S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 2015;10:123–135. doi: 10.1080/17452759.2015.1097053.
    1. Haleem A., Javaid M. Polyether ether ketone (PEEK) and its manufacturing of customised 3D printed dentistry parts using additive manufacturing. Clin. Epidemiol. Glob. Health. 2019;7:654–660. doi: 10.1016/j.cegh.2019.03.001.
    1. Rinaldi M., Cecchini F., Pigliaru L., Ghidini T., Lumaca F., Nanni F. Additive Manufacturing of Polyether Ether Ketone (PEEK) for Space Applications: A Nanosat Polymeric Structure. Polymers. 2021;13:11. doi: 10.3390/polym13010011.
    1. Xepapadeas A.B., Weise C., Frank K., Spintzyk S., Poets C.F., Wiechers C., Arand J., Koos B. Technical note on introducing a digital workflow for newborns with craniofacial anomalies based on intraoral scans—Part II: 3D printed Tubingen palatal plate prototype for newborns with Robin sequence. BMC Oral. Health. 2020;20:171. doi: 10.1186/s12903-020-01159-7.
    1. Ligon S.C., Liska R., Stampfl J., Gurr M., Muülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017;117:10212–10290. doi: 10.1021/acs.chemrev.7b00074.
    1. Abdullah F., Okuyama K.-i., Morimitsu A., Yamagata N. Effects of Thermal Cycle and Ultraviolet Radiation on 3D Printed Carbon Fiber/Polyether Ether Ketone Ablator. Aerospace. 2020;7:95. doi: 10.3390/aerospace7070095.
    1. Han X., Yang D., Yang C., Spintzyk S., Scheideler L., Li P., Li D., Geis-Gerstorfer J., Rupp F. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J. Clin. Med. 2019;8:240. doi: 10.3390/jcm8020240.
    1. Wu Y., Cao Y., Wu Y., Li D. Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites. Materials. 2020;13:4475. doi: 10.3390/ma13204475.
    1. Harding M.J., Brady S., O’Connor H., Lopez-Rodriguez R., Edwards M.D., Tracy S., Dowling D., Gibson G., Girard K.P., Ferguson S. 3D printing of PEEK reactors for flow chemistry and continuous chemical processing. React. Chem. Eng. 2020;5:728–735. doi: 10.1039/C9RE00408D.
    1. Gonçalves J., Lima P., Krause B., Pötschke P., Lafont U., Gomes J.R., Abreu C.S., Paiva M.C., Covas J.A. Electrically conductive polyetheretherketone nanocomposite filaments: From production to fused deposition modeling. Polymers. 2018;10:925. doi: 10.3390/polym10080925.
    1. Sharma N., Aghlmandi S., Cao S., Kunz C., Honigmann P., Thieringer F.M. Quality characteristics and clinical relevance of in-house 3D-printed customized polyetheretherketone (PEEK) implants for craniofacial reconstruction. J. Clin. Med. 2020;9:2818. doi: 10.3390/jcm9092818.
    1. Wang Y., Muller W.D., Rumjahn A., Schwitalla A. Parameters influencing the outcome of additive manufacturing of tiny medical devices based on PEEK. Materials. 2020;13:466. doi: 10.3390/ma13020466.
    1. Rivard C.H., Rhalmi S., Coillard C. In vivo biocompatibility testing of peek polymer for a spinal implant system: A study in rabbits. J. Biomed. Mater. Res. 2002;62:488–498. doi: 10.1002/jbm.10159.
    1. Oh J.H. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac. Plast. Reconstr. Surg. 2018;40:2. doi: 10.1186/s40902-018-0141-9.
    1. Sharma N., Honigmann P., Cao S., Thieringer F. Dimensional characteristics of FDM 3D printed PEEK implant for craniofacial reconstructions. Trans. Addit. Manuf. Meets Med. 2020:2.
    1. Basgul C., Yu T., MacDonald D.W., Siskey R., Marcolongo M., Kurtz S.M. Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication. J. Mater. Res. 2018;33:2040–2051. doi: 10.1557/jmr.2018.178.
    1. Rodzen K., Sharma P.K., McIlhagger A., Mokhtari M., Dave F., Tormey D., Sherlock R., Meenan B.J., Boyd A. The Direct 3D Printing of Functional PEEK/Hydroxyapatite Composites via a Fused Filament Fabrication Approach. Polymers. 2021;13:545. doi: 10.3390/polym13040545.
    1. Liu D., Fu J., Fan H., Li D., Dong E., Xiao X., Wang L., Guo Z. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: A case report. J. Bone Oncol. 2018;12:78–82. doi: 10.1016/j.jbo.2018.07.012.
    1. Andrew J.J., Alhashmi H., Schiffer A., Kumar S., Deshpande V.S. Energy absorption and self-sensing performance of 3D printed CF/PEEK cellular composites. Mater. Des. 2021:109863. doi: 10.1016/j.matdes.2021.109863.
    1. Kumar A., Yap W.T., Foo S.L., Lee T.K. Effects of sterilization cycles on PEEK for medical device application. Bioengineering. 2018;5:18. doi: 10.3390/bioengineering5010018.
    1. Verhoef L.A., Budde B.W., Chockalingam C., Nodar B.G., van Wijk A.J. The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach. Energy Policy. 2018;112:349–360. doi: 10.1016/j.enpol.2017.10.034.
    1. Wu Y., Cao Y., Wu Y., Li D. Neutron shielding performance of 3D-printed boron carbide PEEK composites. Materials. 2020;13:2314. doi: 10.3390/ma13102314.
    1. Cicala G., Latteri A., Del Curto B., Lo Russo A., Recca G., Fare S. Engineering thermoplastics for additive manufacturing: A critical perspective with experimental evidence to support functional applications. J. Appl. Biomater. Funct. Mater. 2017;15:10–18. doi: 10.5301/jabfm.5000343.
    1. Huang H., Liu W., Liu Z. An additive manufacturing-based approach for carbon fiber reinforced polymer recycling. CIRP Ann. 2020;69:33–36. doi: 10.1016/j.cirp.2020.04.085.
    1. Lv C., Heiter J., Haljasorg T., Leito I. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing. Anal. Chim. Acta. 2016;932:114–123. doi: 10.1016/j.aca.2016.05.026.
    1. Kurtz S.M., Devine J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–4869. doi: 10.1016/j.biomaterials.2007.07.013.
    1. Cizek G.R., Boyd L.M. Imaging pitfalls of interbody spinal implants. Spine. 2000;25:2633–2636. doi: 10.1097/00007632-200010150-00015.
    1. Small G. Outstanding physical properties make PEEK ideal for sealing applications. Seal. Technol. 2014;2014:9–12. doi: 10.1016/S1350-4789(14)70144-8.
    1. Hou X., Hu Y., Hu X., Jiang D. Poly (ether ether ketone) composites reinforced by graphene oxide and silicon dioxide nanoparticles: Mechanical properties and sliding wear behavior. High Perform. Polym. 2018;30:406–417. doi: 10.1177/0954008317701549.
    1. Saleem A., Frormann L., Iqbal A. High performance thermoplastic composites: Study on the mechanical, thermal, and electrical resistivity properties of carbon fiber-reinforced polyetheretherketone and polyethersulphone. Polym. Compos. 2007;28:785–796. doi: 10.1002/pc.20297.
    1. Tsai P.-I., Wu M.-H., Li Y.-Y., Lin T.-H., Tsai J.S., Huang H.-I., Lai H.-J., Lee M.-H., Chen C.-Y. Additive-manufactured Ti-6Al-4 V/Polyetheretherketone composite porous cage for Interbody fusion: Bone growth and biocompatibility evaluation in a porcine model. BMC Musculoskelet. Disord. 2021;22:171. doi: 10.1186/s12891-021-04022-0.
    1. Kashfi M., Tehrani M. Effects of void content on flexural properties of additively manufactured polymer composites. Compos. Part C Open Access. 2021;6:100173. doi: 10.1016/j.jcomc.2021.100173.
    1. Basgul C., Thieringer F.M., Kurtz S.M. Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone. Addit. Manuf. 2021:102097. doi: 10.1016/j.addma.2021.102097.
    1. El Magri A., El Mabrouk K., Vaudreuil S. Preparation and characterization of poly (ether ether ketone)/poly (ether imide) [PEEK/PEI] blends for fused filament fabrication. J. Mater. Sci. 2021:1–20. doi: 10.1007/s10853-021-06172-x.
    1. Manzoor F., Golbang A., Jindal S., Dixon D., McIlhagger A., Harkin-Jones E., Crawford D., Mancuso E. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential. J. Mech. Behav. Biomed. Mater. 2021:104601. doi: 10.1016/j.jmbbm.2021.104601.
    1. Alsinani N., Ghaedsharaf M., Lebel L.L. Effect of cooling temperature on deconsolidation and pulling forces in a thermoplastic pultrusion process. Compos. B. Eng. 2021;219:108889. doi: 10.1016/j.compositesb.2021.108889.
    1. Sharma N., Aghlmandi S., Dalcanale F., Seiler D., Zeilhofer H.-F., Honigmann P., Thieringer F.M. Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants. Int. J. Mol. Sci. 2021;22:8521. doi: 10.3390/ijms22168521.
    1. Algarni M., Ghazali S. Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters. Crystals. 2021;11:995. doi: 10.3390/cryst11080995.
    1. Matschinski A., Ziegler P., Abstreiter T., Wolf T., Drechsler K. Fiber formation of printed carbon Fiber/Poly (Ether Ether Ketone) with different nozzle shapes. Polym. Int. 2021 doi: 10.1002/pi.6196.
    1. Rinaldi M., Ghidini T., Nanni F. Fused filament fabrication of polyetheretherketone/multiwalled carbon nanotube nanocomposites: The effect of thermally conductive nanometric filler on the printability and related properties. Polym. Int. 2021 doi: 10.1002/pi.6206.
    1. Guo C., Liu X., Liu G. Surface finishing of FDM-fabricated amorphous polyetheretherketone and its carbon-fiber-reinforced composite by dry milling. Polymers. 2021;13:2175. doi: 10.3390/polym13132175.
    1. Rouway M., Nachtane M., Tarfaoui M., Chakhchaoui N., Omari L.E.H., Fraija F., Cherkaoui O. 3D printing: Rapid manufacturing of a new small-scale tidal turbine blade. Int. J. Adv. Manuf. Technol. 2021:1–16. doi: 10.1007/s00170-021-07163-7.
    1. Schönhoff L.M., Mayinger F., Eichberger M., Reznikova E., Stawarczyk B. 3D printing of dental restorations: Mechanical properties of thermoplastic polymer materials. J. Mech. Behav. Biomed. Mater. 2021;119:104544. doi: 10.1016/j.jmbbm.2021.104544.
    1. Zheng J., Kang J., Sun C., Yang C., Wang L., Li D. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. J. Mech. Behav. Biomed. Mater. 2021;118:104475. doi: 10.1016/j.jmbbm.2021.104475.
    1. Pisula J., Budzik G., Turek P., Cieplak M. An analysis of polymer gear wear in a spur gear train made using FDM and FFF methods based on tooth surface topography assessment. Polymers. 2021;13:1649. doi: 10.3390/polym13101649.
    1. Kusoglu I.M., Doñate-Buendía C., Barcikowski S., Gökce B. Laser powder bed fusion of polymers: Quantitative esearch direction indices. Materials. 2021;14:1169. doi: 10.3390/ma14051169.
    1. Wang Y., Shen J., Yan M., Tian X. Poly ether ether ketone and its composite powder prepared by thermally induced phase separation for high temperature selective laser sintering. Mater. Des. 2021;201:109510. doi: 10.1016/j.matdes.2021.109510.
    1. Smith J.A., Li S., Mele E., Goulas A., Engstrøm D., Silberschmidt V.V. Printability and mechanical performance of biomedical PDMS-PEEK composites developed for material extrusion. J. Mech. Behav. Biomed. Mater. 2021;115:104291. doi: 10.1016/j.jmbbm.2020.104291.
    1. Nyman L., Kestilä A., Porri P., Pudas M., Salmi M., Silander R., Miikkulainen V., Kaipio M., Kallio E., Ritala M. Constructing spacecraft components using additive manufacturing and atomic layer deposition: First steps for integrated electric circuitry. J. Aerosp. Eng. 2021;34:04021049. doi: 10.1061/(ASCE)AS.1943-5525.0001298.
    1. Aretxabaleta M., Xepapadeas A.B., Poets C.F., Koos B., Spintzyk S. Fracture load of an Orthodontic appliance for Robin Sequence Treatment in a digital workflow. Materials. 2021;14:344. doi: 10.3390/ma14020344.
    1. Rahman K.M., Letcher T., Reese R. Mechanical properties of additively manufactured PEEK components using fused filament fabrication; Proceedings of the ASME International Mechanical Engineering Congress and Exposition; Houston, TX, USA. 10–13 November 2015; p. V02AT02A009.
    1. Peng W., Bin Z.O., Shouling D., Lei L., Huang C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut. 2021;34:236–246.
    1. Golbang A., Mokhtari M., Harkin-Jones E., Archer E., Mcilhagger A. Additive manufacturing and injection moulding of high-performance IF-WS 2/PEEK nanocomposites: A comparative study. Front. Mater. 2021;8:745088. doi: 10.3389/fmats.2021.745088.

Source: PubMed

3
Předplatit