Melatonin: Roles in influenza, Covid-19, and other viral infections

George Anderson, Russel J Reiter, George Anderson, Russel J Reiter

Abstract

There is a growing appreciation that the regulation of the melatonergic pathways, both pineal and systemic, may be an important aspect in how viruses drive the cellular changes that underpin their control of cellular function. We review the melatonergic pathway role in viral infections, emphasizing influenza and covid-19 infections. Viral, or preexistent, suppression of pineal melatonin disinhibits neutrophil attraction, thereby contributing to an initial "cytokine storm", as well as the regulation of other immune cells. Melatonin induces the circadian gene, Bmal1, which disinhibits the pyruvate dehydrogenase complex (PDC), countering viral inhibition of Bmal1/PDC. PDC drives mitochondrial conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA), thereby increasing the tricarboxylic acid cycle, oxidative phosphorylation, and ATP production. Pineal melatonin suppression attenuates this, preventing the circadian "resetting" of mitochondrial metabolism. This is especially relevant in immune cells, where shifting metabolism from glycolytic to oxidative phosphorylation, switches cells from reactive to quiescent phenotypes. Acetyl-CoA is a necessary cosubstrate for arylalkylamine N-acetyltransferase, providing an acetyl group to serotonin, and thereby initiating the melatonergic pathway. Consequently, pineal melatonin regulates mitochondrial melatonin and immune cell phenotype. Virus- and cytokine-storm-driven control of the pineal and mitochondrial melatonergic pathway therefore regulates immune responses. Virus-and cytokine storm-driven changes also increase gut permeability and dysbiosis, thereby suppressing levels of the short-chain fatty acid, butyrate, and increasing circulating lipopolysaccharide (LPS). The alterations in butyrate and LPS can promote viral replication and host symptom severity via impacts on the melatonergic pathway. Focussing on immune regulators has treatment implications for covid-19 and other viral infections.

Keywords: aryl hydrocarbon receptor; covid-19; immune; influenza; melatonin; metabolism; mitochondria; sirtuin; treatment; viral infection.

Conflict of interest statement

The authors declare no potential conflict of interest.

© 2020 John Wiley & Sons, Ltd.

Figures

FIGURE 1
FIGURE 1
The cytokine storm and stress can increase gut dysbiosis/permeability, further contributing to cytokine induced IDO and TDO, leading to kynurenine and kynurenic acid, which activate the AhR to increase CYP1B1 and regulate the NAS/Melatonin ratio. Other factors, including CYP2C19, mGluR5, P2Y1, and O‐demethylation can also regulate the NAS/melatonin ratio. The miRNAs, miR‐7, miR‐375, and miR‐451 are increased following many viral infections, thereby suppressing 14‐3‐3 and the stabilization of AANAT, leading to melatonergic pathway inhibition. The suppression of melatonin, including from an increase in the NAS/melatonin ratio, attenuates melatonin's induction of Bmal1 and therefore the circadian regulation of mitochondria. Bmal1 induces PDC, leading to an increase in OXPHOS, the TCA cycle and the acetyl‐CoA that is a necessary co‐substrate for AANAT and melatonergic pathway activation. The decrease in pineal and mitochondrial melatonin contributes to an increase in the replication and severity of many viral infections. The arrows indicate “stimulation”, with a crossed‐line indicating “inhibitory”

References

    1. Petrova VN, Russell CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol. 2018;16(1):60 10.1038/nrmicro.2017.146.
    1. Tan DX, Hardeland R. Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation. Melatonin Res. 2020;3(1):120‐43.
    1. Zhou Y, Hou Y, Shen J et al Network‐based repurposing for human coronavirus. MedRxiv 2020.02.03.2020263 (2020). doi: 10.1101/2020.02.03.2020263
    1. Reiter RJ, Ma Q, Sharma R. Treatment of Ebola and other infectious diseases: melatonin “goes viral”. Melatonin Res. 2020;3(1):43‐57. 10.32794/mr11250047.
    1. Anderson G, Maes M, Markus RP, Rodriguez M. Ebola virus: melatonin as a readily available treatment option. J Med Virol. 2015;87(4):537‐543. 10.1002/jmv.24130.
    1. Tan DX, Reiter RJ. Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2019;2:44‐66.
    1. Anderson G. Integrating pathophysiology in migraine: Role of the gut microbiome and melatonin. Curr Pharm Des. 2019;25(33):3550‐3562. 10.2174/1381612825666190920114611.
    1. Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005;33(4):489‐494. 10.1124/dmd.104.002410).
    1. Ferreira ZS, Markus RP. Characterisation of P2Y(1)‐like receptor in cultured rat pineal glands. Eur J Pharmacol. 2001;415(2–3):151‐156. 10.1016/s0014-2999(01)00823-8.
    1. Mortani Barbosa EJ, Ferreira ZS, Markus RP. Purinergic and noradrenergic cotransmission in the rat pineal gland. Eur J Pharmacol. 2000;401(1):59‐62. 10.1016/s0014-2999(00)00416-7.
    1. Souza‐Teodoro LH, Dargenio‐Garcia L, Petrilli‐Lapa CL, et al. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland. J Pineal Res. 2016;60(2):242‐249. 10.1111/jpi.12309.
    1. Villela D, Atherino VF, Lima Lde S, et al. Modulation of pineal melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through NF‐κB activation. Biomed Res Int. 2013;2013:618432 10.1155/2013/618432.
    1. Ishio S, Yamada H, Craft CM, Moriyama Y. Hydroxyindole‐O‐methyltransferase is another target for L‐glutamate‐evoked inhibition of melatonin synthesis in rat pinealocytes. Brain Res. 1999;850(1–2):73‐78.
    1. Anderson G, Reiter RJ. Glioblastoma: Role of mitochondria N‐acetylserotonin/melatonin ratio in mediating effects of miR‐451 and aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int J Tryptophan Res. 2019;12:1178646919855942 10.1177/1178646919855942.
    1. Anderson G, Rodriguez M, Reiter RJ. Multiple sclerosis: Melatonin, orexin, and ceramide interact with platelet activation coagulation factors and gut‐microbiome‐derived butyrate in the circadian dysregulation of mitochondria in glia and immune cells. Int J Mol Sci. 2019;20(21):E5500 10.3390/ijms20215500.
    1. Reiter RJ, Sharma R, Ma Q, Rosales‐Corral SA, Acuna‐Castroviejo D, Escames G. Inhibition of mitochondrial pyruvate dehydrogenase kinase: A proposed mechanism by which melatonin causes cancer cells to overcome aerobic glycolysis, limit tumor growth and reverse insensitivity to chemotherapy. Melatonin Res. 2019;2:105‐119.
    1. Anderson G. Daytime orexin and night‐time melatonin regulation of mitochondria melatonin: roles in circadian oscillations systemically and centrally in breast cancer symptomatology. Melatonin Res. 2019;2(4):1‐8. 10.32794/mr11250037.
    1. Bjørklund G, Dadar M, Anderson G, Chirumbolo S, Maes M. Preventive measures to slow down the progression of Parkinson's disease. Pharm Res. In press.
    1. Markus RP, Fernandes PA, Kinker GS, da Silveira C‐MS, Marçola M. Immune‐pineal axis—acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol. 2018;175(16):3239‐3250. 10.1111/bph.14083.
    1. Boule LA, Burke CG, Jin GB, Lawrence BP. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome. Sci Rep. 2018;8(1):1826 10.1038/s41598-018-20197-4.
    1. Franchini AM, Myers JR, Jin GB, Shepherd DM, Lawrence BP. Genome‐wide transcriptional analysis reveals novel AhR targets that regulate dendritic cell function during influenza A virus infection. Immunohorizons. 2019;3(6):219‐235. 10.4049/immunohorizons.1900004.
    1. Anderson G, Maes M. Interactions of tryptophan and its catabolites with melatonin and the alpha 7 nicotinic receptor in central nervous system and psychiatric disorders: Role of the aryl hydrocarbon receptor and direct mitochondria regulation. Int J Tryptophan Res. 2017;10:1178646917691738 10.1177/1178646917691738.
    1. Grunewald ME, Shaban MG, Mackin SR, Fehr AR, Perlman S. Murine coronavirus infection activates the aryl hydrocarbon receptor in an indoleamine 2,3‐dioxygenase‐independent manner, contributing to cytokine modulation and proviral TCDD‐inducible‐PARP expression. J Virol. 2020;94(3):e01743‐19 10.1128/JVI.01743-19.
    1. Kurupati RK, Kossenkoff A, Kannan S, et al. The effect of timing of influenza vaccination and sample collection on antibody titers and responses in the aged. Vaccine. 2017;35(30):3700‐3708. 10.1016/j.vaccine.2017.05.074.
    1. Sengupta S, Tang SY, Devine JC, et al. Circadian control of lung inflammation in influenza infection. Nat Commun. 2019;10(1):4107 10.1038/s41467-019-11400-9.
    1. Edgar RS, Stangherlin A, Nagy AD, et al. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci U S A. 2016;113(36):10085‐10090. 10.1073/pnas.1601895113.
    1. Zhang Z, Hunter L, Wu G, et al. Genome‐wide effect of pulmonary airway epithelial cell‐specific Bmal1 deletion. FASEB J. 2019;33(5):6226‐6238. 10.1096/fj.201801682R.
    1. Sundar IK, Ahmad T, Yao H, et al. Influenza A virus‐dependent remodeling of pulmonary clock function in a mouse model of COPD. Sci Rep. 2015;4:9927 10.1038/srep09927.
    1. Pontes GN, Cardoso EC, Carneiro‐Sampaio MM, Markus RP. Pineal melatonin and the innate immune response: the TNF‐alpha increase after cesarean section suppresses nocturnal melatonin production. J Pineal Res. 2007;43(4):365‐371.
    1. Kido H, Indalao IL, Kim H, Kimoto T, Sakai S, Takahashi E. Energy metabolic disorder is a major risk factor in severe influenza virus infection: Proposals for new therapeutic options based on animal model experiments. Respir Investig. 2016;54(5):312‐319. 10.1016/j.resinv.2016.02.007.
    1. Indalao IL, Sawabuchi T, Takahashi E, Kido H. IL‐1β is a key cytokine that induces trypsin upregulation in the influenza virus‐cytokine‐trypsin cycle. Arch Virol. 2017;162(1):201‐211. 10.1007/s00705-016-3093-3.
    1. Wang W, Li G, Wu D, et al. Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin‐1β secretion. Nat Commun. 2018;9(1):106 10.1038/s41467-017-02645-3.
    1. Zhao C, Zhao W. NLRP3 inflammasome‐A key player in antiviral responses. Front Immunol. 2020;11:211 10.3389/fimmu.2020.00211.
    1. Wu HM, Zhao CC, Xie QM, Xu J, Fei GH. TLR2‐melatonin feedback loop regulates the activation of NLRP3 inflammasome in murine allergic airway inflammation. Front Immunol. 2020;11:172 10.3389/fimmu.2020.00172.
    1. Anderson G, Ojala J. Alzheimer's and seizures: interleukin‐18, indoleamine 2,3‐dioxygenase and quinolinic Acid. Int J Tryptophan Res. 2010;3:169‐173. 10.4137/IJTR.S4603.
    1. Slaats J, Ten Oever J, van de Veerdonk FL, Netea MG. IL‐1β/IL‐6/CRP and IL‐18/ferritin: distinct inflammatory programs in infections. PLoS Pathog. 2016;12(12):e1005973 10.1371/journal.ppat.1005973.
    1. Foteinou PT, Venkataraman A, Francey LJ, Anafi RC, Hogenesch JB, Doyle FJ 3rd. Computational and experimental insights into the circadian effects of SIRT1. Proc Natl Acad Sci U S A. 2018;115(45):11643‐11648. 10.1073/pnas.1803410115.
    1. Elesela S, Morris SB, Narayanan S, Kumar S, Lombard DB, Lukacs NW. Sirtuin 1 regulates mitochondrial function and immune homeostasis in respiratory syncytial virus infected dendritic cells. PLoS Pathog. 2020;16(2):e1008319 10.1371/journal.ppat.1008319.
    1. Koyuncu E, Budayeva HG, Miteva YV, et al. Sirtuins are evolutionarily conserved viral restriction factors. mBio. 2014;5(6):e02249‐14 10.1128/mBio.02249-14.
    1. Reiter RJ, Tan DX, Rosales‐Corral S, Galano A, Jou MJ, Acuna‐Castroviejo D. Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci. 2018;19(8):E2439 10.3390/ijms19082439.
    1. Rosenberger CM, Podyminogin RL, Navarro G, et al. miR‐451 regulates dendritic cell cytokine responses to influenza infection. J Immunol. 2012;189(12):5965‐5975. 10.4049/jimmunol.1201437.
    1. Buggele WA, Johnson KE, Horvath CM. Influenza A virus infection of human respiratory cells induces primary microRNA expression. J Biol Chem. 2012;287(37):31027‐31040. 10.1074/jbc.M112.387670.
    1. Wang X, Jia Y, Wang X, et al. MiR‐375 has contrasting effects on newcastle disease virus growth depending on the target gene. Int J Biol Sci. 2019;15(1):44‐57. 10.7150/ijbs.25106.
    1. Anderson G, Maes M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: assessment, treatment and classification implications. Curr Top Med Chem. 2020;20 10.2174/1568026620666200131094445.
    1. Picchianti‐Diamanti A, Rosado MM, D'Amelio R. Infectious agents and inflammation: the role of microbiota in autoimmune arthritis. Front Microbiol. 2018;8:2696 10.3389/fmicb.2017.02696.
    1. Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection‐induced microbiome alterations and secondary bacterial pneumonia. Front Immunol. 2018;9:2640 10.3389/fimmu.2018.02640.
    1. Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin‐releasing hormone increase intestinal permeability in humans by a mast cell‐dependent mechanism. Gut. 2014;63(8):1293‐1299. 10.1136/gutjnl-2013-305690.
    1. Anderson G. Gut dysbiosis dysregulates central and systemic homeostasis via decreased melatonin and suboptimal mitochondria functioning: pathoetiological and pathophysiological implications. Melatonin Res. 2019;2(2):70‐85. 10.32794/mr11250022.
    1. Jin CJ, Engstler AJ, Sellmann C, et al. Sodium butyrate protects mice from the development of the early signs of non‐alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr. 2016;23:1‐12.
    1. Yagi K, Ishii M, Namkoong H, et al. Histone deacetylase inhibition protects mice against lethal postinfluenza pneumococcal infection. Crit Care Med. 2016;44(10):e980‐e987. 10.1097/CCM.0000000000001821.
    1. Shi Z, Gewirtz AT. Together forever: bacterial‐viral interactions in infection and immunity. Viruses. 2018;10(3):E122 10.3390/v10030122.
    1. Perrin‐Cocon L, Aublin‐Gex A, Sestito SE, et al. TLR4 antagonist FP7 inhibits LPS‐induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci Rep. 2017;7:40791 10.1038/srep40791.
    1. Koch RM, Diavatopoulos DA, Ferwerda G, Pickkers P, de Jonge MI, Kox M. The endotoxin‐induced pulmonary inflammatory response is enhanced during the acute phase of influenza infection. Intensive Care Med Exp. 2018;6(1):15 10.1186/s40635-018-0182-5.
    1. Chen Y, Sun H, Bai Y, Zhi F. Gut dysbiosis‐derived exosomes trigger hepatic steatosis by transiting HMGB1 from intestinal to liver in mice. Biochem Biophys Res Commun. 2019;509(3):767‐772. 10.1016/j.bbrc.2018.12.180.
    1. Bandoro C, Runstadler JA. Bacterial lipopolysaccharide destabilizes influenza viruses. mSphere. 2017;2(5):e00267‐17 10.1128/mSphere.00267-17.
    1. Wang CC, Wu H, Lin FH, et al. Sodium butyrate enhances intestinal integrity, inhibits mast cell activation, inflammatory mediator production and JNK signaling pathway in weaned pigs. Innate Immun. 2018;24(1):40‐46. 10.1177/1753425917741970.
    1. Grebe KM, Takeda K, Hickman HD, et al. Cutting edge: sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis. J Immunol. 2010;184(2):540‐544. 10.4049/jimmunol.0903395.
    1. Fujiwara S, Hoshizaki M, Ichida Y, et al. Pulmonary phagocyte‐derived NPY controls the pathology of severe influenza virus infection. Nat Microbiol. 2019;4(2):258‐268. 10.1038/s41564-018-0289-1.
    1. Li‐Sha G, Jing‐Lin Z, Li L, Guang‐Yi C, Xiao‐Wei L, Yue‐Chun L. Nicotine inhibits the production of proinflammatory cytokines of mice infected with coxsackievirus B3. Life Sci. 2016;148:9‐16. 10.1016/j.lfs.2016.02.003.
    1. Cui WY, Zhao S, Polanowska‐Grabowska R, et al. Identification and characterization of poly(I:C)‐induced molecular responses attenuated by nicotine in mouse macrophages. Mol Pharmacol. 2013;83(1):61‐72. 10.1124/mol.112.081497.
    1. Markus RP, Silva CL, Franco DG, Barbosa EM Jr, Ferreira ZS. Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacol Ther. 2010;126(3):251‐262. 10.1016/j.pharmthera.2010.02.009.
    1. Sommansson A, Nylander O, Sjöblom M. Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor‐dependent pathway in rats in vivo. J Pineal Res. 2013;54(3):282‐291. 10.1111/jpi.12013.
    1. Anderson G. Linking the biological underpinnings of depression: role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt C):255‐266. 10.1016/j.pnpbp.2017.04.022.
    1. Gergalova G, Lykhmus O, Kalashnyk O, et al. Mitochondria express α7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One. 2012;7(2):e31361 10.1371/journal.pone.0031361.
    1. Tekin S, Keske S, Alan S, et al. Predictors of fatality in influenza A virus subtype infections among inpatients in the 2015‐2016 season. Int J Infect Dis. 2019;81:6‐9. 10.1016/j.ijid.2019.01.005.
    1. Noval Rivas M, Wakita D, Franklin MK, et al. Intestinal permeability and IgA provoke immune vasculitis linked to cardiovascular inflammation. Immunity. 2019;51(3):508‐521.e6. 10.1016/j.immuni.2019.05.021.
    1. Bindels LB, Neyrinck AM, Loumaye A, et al. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget. 2018. Apr 6;9(26):18224‐18238. 10.18632/oncotarget.24804.
    1. Geto Z, Molla MD, Challa F, Belay Y, Getahun T. Mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non‐communicable diseases. J Inflamm Res. 2020;13:97‐107. 10.2147/JIR.S232009.
    1. Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol Metab. 2019;30(10):767‐779. 10.1016/j.tem.2019.07.008.
    1. Truong KK, Lam MT, Grandner MA, Sassoon CS, Malhotra A. Timing matters: circadian rhythm in sepsis, obstructive lung disease, obstructive sleep apnea, and cancer. Ann Am Thorac Soc. 2016;13(7):1144‐1154. 10.1513/AnnalsATS.201602-125FR.
    1. Anderson G, Mazzoccoli G. Left ventricular hypertrophy: roles of mitochondria CYP1B1 and melatonergic pathways in co‐ordinating wider pathophysiology. Int J Mol Sci. 2019;20(16):E4068 10.3390/ijms20164068.
    1. Hosseinzadeh A, Javad‐Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci. May 2018;201:17‐29. 10.1016/j.lfs.2018.03.032.
    1. Mok JX, Ooi JH, Ng KY, Koh RY, Chye SM. A new prospective on the role of melatonin in diabetes and its complications. Horm Mol Biol Clin Investig. 2019;40(1). 10.1515/hmbci-2019-0036.
    1. Liu A, Lv H, Wang H, Yang H, Li Y, Qian J. Aging increases the severity of colitis and the related changes to the gut barrier and gut microbiota in humans and mice. J Gerontol A Biol Sci Med Sci. 2020;glz263 10.1093/gerona/glz263.
    1. Zole E, Ranka R. Mitochondria, its DNA and telomeres in ageing and human population. Biogerontology. 2018;19(3–4):189‐208. 10.1007/s10522-018-9748-6.
    1. Froy O. Circadian rhythms, nutrition and implications for longevity in urban environments. Proc Nutr Soc. 2018;77(3):216‐222. 10.1017/S0029665117003962.
    1. Reiter RJ, Tan DX, Rosales‐Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: central organelles for melatonin's antioxidant and anti‐aging actions. Molecules. 2018;23(2):E509 10.3390/molecules23020509.
    1. Post CM, Boule LA, Burke CG, O'Dell CT, Winans B, Lawrence BP. The ancestral environment shapes antiviral CD8+ T cell responses across generations. iScience. 2019;20:168‐183. 10.1016/j.isci.2019.09.014.
    1. Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol. 2018;9:2061 10.3389/fimmu.2018.02061.1.

Source: PubMed

3
Předplatit