Supplementation with Nicotinamide Riboside Reduces Brain Inflammation and Improves Cognitive Function in Diabetic Mice

Hee Jae Lee, Soo Jin Yang, Hee Jae Lee, Soo Jin Yang

Abstract

The purpose of this study is to investigate whether nicotinamide riboside (NR) can improve inflammation and cognitive function in diabetic mice. ICR male mice were fed for 14 weeks with either high-fat chow diet (HF, 60% kcal fat) or standard chow diet (CON, 10% kcal fat). HF, streptozotocin, and nicotinamide were used to induce hyperglycemia. NR or vehicle was delivered via stomach gavage for six weeks. Oral glucose tolerance test, Y-maze test, and nest construction test were conducted before and after the NR treatment period. NR treatment induced down-regulation of NLRP3, ASC, and caspase-1. NR reduced IL-1 expression significantly by 50% in whole brains of hyperglycemic mice. Other inflammatory markers including TNF-α and IL-6 were also attenuated by NR. Brain expression of amyloid-β precursor protein and presenilin 1 were reduced by NR. In addition, NR induced significant reduction of amyloid-β in whole brains of diabetic mice. NR treatment restored hyperglycemia-induced increases in brain karyopyknosis to the levels of controls. Nest construction test showed that NR improved hippocampus functions. Spatial recognition memory and locomotor activity were also improved by NR supplementation. These findings suggest that NR may be useful for treating cognitive impairment by inhibiting amyloidogenesis and neuroinflammation.

Keywords: amyloidogenesis; cognitive impairment; neuroinflammation; nicotinamide riboside.

Conflict of interest statement

There are no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
The effects of nicotinamide riboside (NR) on the nucleotide binding and oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome components and inflammatory markers in whole brains of mice. Relative gene expression of (a) NLRP3, (b) apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), (c) caspase 1 (CASP1), (d) interleukin (IL)-1, (e) tumor necrosis factor (TNF)-α, and (f) IL-6. Values represent the mean ± SEM (n = 5 per group). Values with different letters in the same variable are significantly different (p < 0.05). CON, control; HFD, high-fat diet.
Figure 2
Figure 2
The effects of nicotinamide riboside (NR) on amyloid-beta precursor protein (APP), presenilin1 (PS1), and amyloid-β in the whole brain of mice. Relative gene expression of (a) APP and (b) PS1. (c) Amyloid beta concentrations in brain were analyzed by ELISA. (d) Representative Western blot for amyloid beta and beta-actin, and their respective quantification in brain. Values represent the mean ± SEM (n = 5 per group). Values with different letters in the same variable are significantly different (p < 0.05). CON, control; HFD, high-fat diet.
Figure 3
Figure 3
Representative photographs of hematoxylin and eosin (H and E)-stained brain sections. (a) The areas examined in the brain were marked with yellow boxes. (b) H and E-stained brain sections. Original magnification 400×. Yellow arrows indicate karyopyknosis of cells. CON, control; HFD, high-fat diet; NR, nicotinamide riboside.
Figure 4
Figure 4
The effects of nicotinamide riboside (NR) on behavior tests. (a) Nest torn score and (b) total nest score were evaluated from nest construction test. (c) First choice latency, (d) latency first entrance to new zone, (e) time in start zone (%), (f) alternation triplet (%), (g) total distance, and (h) mean speed in start zone are analyzed from the Y-maze test. Values represent the mean ± SEM. Values with different letters in the same variable are significantly different (p < 0.05). CON, control; HFD, high-fat diet.

References

    1. Eid A., Mhatre I., Richardson J.R. Gene-environment interactions in Alzheimer’s disease: A potential path to precision medicine. Pharmacol. Ther. 2019;199:173–187. doi: 10.1016/j.pharmthera.2019.03.005.
    1. Naseri N.N., Wang H., Guo J., Sharma M., Luo W. The complexity of tau in Alzheimer’s disease. Neurosci. Lett. 2019;705:183–194. doi: 10.1016/j.neulet.2019.04.022.
    1. Bostanciklioglu M. An update on the interactions between Alzheimer’s disease, autophagy and inflammation. Gene. 2019;705:157–166. doi: 10.1016/j.gene.2019.04.040.
    1. Wang C., Shou Y., Pan J., Du Y., Liu C., Wang H. The relationship between cholesterol level and Alzheimer’s disease-associated APP proteolysis/Abeta metabolism. Nutr. Neurosci. 2019;22:453–463. doi: 10.1080/1028415X.2017.1416942.
    1. Zoltowska K.M., Berezovska O. Dynamic Nature of presenilin1/gamma-Secretase: Implication for Alzheimer’s Disease Pathogenesis. Mol. Neurobiol. 2018;55:2275–2284. doi: 10.1007/s12035-017-0487-5.
    1. Bustos V., Pulina M.V., Kelahmetoglu Y., Sinha S.C., Gorelick F.S., Flajolet M., Greengard P. Bidirectional regulation of Abeta levels by Presenilin 1. Proc. Natl. Acad. Sci. USA. 2017;114:7142–7147. doi: 10.1073/pnas.1705235114.
    1. Andreeva T.V., Lukiw W.J., Rogaev E.I. Biological Basis for Amyloidogenesis in Alzheimer’s Disease. Biochemistry. 2017;82:122–139. doi: 10.1134/S0006297917020043.
    1. Alonso A., Zaidi T., Novak M., Grundke-Iqbal I., Iqbal K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. USA. 2001;98:6923–6928. doi: 10.1073/pnas.121119298.
    1. Kubis-Kubiak A.M., Rorbach-Dolata A., Piwowar A. Crucial players in Alzheimer’s disease and diabetes mellitus: Friends or foes? Mech. Ageing Dev. 2019;181:7–21. doi: 10.1016/j.mad.2019.03.008.
    1. Chen Y., Yu Q., Gong C.X. Molecular Connection Between Diabetes and Dementia. Adv. Exp. Med. Biol. 2019;1128:103–131.
    1. Ninomiya T. Epidemiological Evidence of the Relationship Between Diabetes and Dementia. Adv. Exp. Med. Biol. 2019;1128:13–25.
    1. Hanyu H. Diabetes-Related Dementia. Adv. Exp. Med. Biol. 2019;1128:147–160.
    1. Hatanaka H., Hanyu H., Fukasawa R., Sato T., Shimizu S., Sakurai H. Peripheral oxidative stress markers in diabetes-related dementia. Geriatr. Gerontol. Int. 2016;16:1312–1318. doi: 10.1111/ggi.12645.
    1. Tsugawa A., Ogawa Y., Takenoshita N., Kaneko Y., Hatanaka H., Jaime E., Fukasawa R., Hanyu H. Decreased Muscle Strength and Quality in Diabetes-Related Dementia. Dement. Geriatr. Cogn. Dis. Extra. 2017;7:454–462. doi: 10.1159/000485177.
    1. Crane P.K., Walker R., Hubbard R.A., Li G., Nathan D.M., Zheng H., Haneuse S., Craft S., Montine T.J., Kahn S.E., et al. Glucose levels and risk of dementia. N. Engl. J. Med. 2013;369:540–548. doi: 10.1056/NEJMoa1215740.
    1. Kang S., Kim C.H., Jung H., Kim E., Song H.T., Lee J.E. Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology. 2017;113:467–479. doi: 10.1016/j.neuropharm.2016.10.029.
    1. Kullmann S., Heni M., Hallschmid M., Fritsche A., Preissl H., Häring H.U. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol. Rev. 2016;96:1169–1209. doi: 10.1152/physrev.00032.2015.
    1. Lee H.J., Seo H.I., Cha H.Y., Yang Y.J., Kwon S.H., Yang S.J. Diabetes and Alzheimer’s Disease: Mechanisms and Nutritional Aspects. Clin. Nutr. Res. 2018;7:229–240. doi: 10.7762/cnr.2018.7.4.229.
    1. Su M., Naderi K., Samson N., Youssef I., Fulop L., Bozso Z., Laroche S., Delatour B., Davis S. Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology. Mol. Neurobiol. 2019;56:5815–5834. doi: 10.1007/s12035-019-1475-8.
    1. Ragy M.M., Kamal N.N. Linking senile dementia to type 2 diabetes: Role of oxidative stress markers, C-reactive protein and tumor necrosis factor-alpha. Neurol. Res. 2017;39:587–595. doi: 10.1080/01616412.2017.1312773.
    1. Ahmad W., Ijaz B., Shabbiri K., Ahmed F., Rehman S. Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/ RNS generation. J. Biomed. Sci. 2017;24:76. doi: 10.1186/s12929-017-0379-z.
    1. Nichols M.R., St-Pierre M.K., Wendeln A.C., Makoni N.J., Gouwens L.K., Garrad E.C., Sohrabi M., Neher J.J., Tremblay M.E., Combs C.K. Inflammatory mechanisms in neurodegeneration. J. Neurochem. 2019;149:562–581. doi: 10.1111/jnc.14674.
    1. Combs C.K., Karlo J.C., Kao S.C., Landreth G.E. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 2001;21:1179–1188. doi: 10.1523/JNEUROSCI.21-04-01179.2001.
    1. Yates S.L., Burgess L.H., Kocsis-Angle J., Antal J.M., Dority M.D., Embury P.B., Piotrkowski A.M., Brunden K.R. Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J. Neurochem. 2000;74:1017–1025. doi: 10.1046/j.1471-4159.2000.0741017.x.
    1. Brunden K.R., Kocsis-Angle J., Embury P., Yates S.L. Abeta-Induced Proinflammatory Cytokine Release from Differentiated Human THP-1 Monocytes. Methods Mol. Med. 2000;32:101–112.
    1. Heneka M.T., Carson M.J., El Khoury J., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5.
    1. Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., Fitzgerald K.A., Latz E., Moore K.J., Golenbock D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 2008;9:857–865. doi: 10.1038/ni.1636.
    1. Heneka M.T., Kummer M.P., Stutz A., Delekate A., Schwartz S., Vieira-Saecker A., Griep A., Axt D., Remus A., Tzeng T.C., et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–678. doi: 10.1038/nature11729.
    1. Baglietto-Vargas D., Shi J., Yaeger D.M., Ager R., LaFerla F.M. Diabetes and Alzheimer’s disease crosstalk. Neurosci. Biobehav. Rev. 2016;64:272–287. doi: 10.1016/j.neubiorev.2016.03.005.
    1. Trammell S.A., Yu L., Redpath P., Migaud M.E., Brenner C. Nicotinamide Riboside Is a Major NAD+ Precursor Vitamin in Cow Milk. J. Nutr. 2016;146:957–963. doi: 10.3945/jn.116.230078.
    1. Vaur P., Brugg B., Mericskay M., Li Z., Schmidt M.S., Vivien D., Orset C., Jacotot E., Brenner C., Duplus E. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration. FASEB J. 2017;31:5440–5452. doi: 10.1096/fj.201700221RR.
    1. Gong B., Pan Y., Vempati P., Zhao W., Knable L., Ho L., Wang J., Sastre M., Ono K., Sauve A.A., et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1alpha regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging. 2013;34:1581–1588. doi: 10.1016/j.neurobiolaging.2012.12.005.
    1. Trammell S.A., Weidemann B.J., Chadda A., Yorek M.S., Holmes A., Coppey L.J., Obrosov A., Kardon R.H., Yorek M.A., Brenner C. Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice. Sci. Rep. 2016;6:26933. doi: 10.1038/srep26933.
    1. Zhang S., Li H., Zhang L., Li J., Wang R., Wang M. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res. 2017;1657:355–360. doi: 10.1016/j.brainres.2016.12.009.
    1. Lin W.T., Chen R.C., Lu W.W., Liu S.H., Yang F.Y. Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer’s disease rat model. Sci. Rep. 2015;5:9671. doi: 10.1038/srep09671.
    1. Jiang L.Y., Tang S.S., Wang X.Y., Liu L.P., Long Y., Hu M., Liao M.X., Ding Q.L., Hu W., Li J.C., et al. PPARgamma agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci. Ther. 2012;18:659–666. doi: 10.1111/j.1755-5949.2012.00341.x.
    1. Hong H., Liu L.P., Liao J.M., Wang T.S., Ye F.Y., Wu J., Wang Y.Y., Wang Y., Li Y.Q., Long Y., et al. Downregulation of LRP1 [correction of LPR1] at the blood-brain barrier in streptozotocin-induced diabetic mice. Neuropharmacology. 2009;56:1054–1059. doi: 10.1016/j.neuropharm.2009.03.001.
    1. Sims-Robinson C., Kim B., Rosko A., Feldman E.L. How does diabetes accelerate Alzheimer disease pathology? Nat. Rev. Neurol. 2010;6:551–559. doi: 10.1038/nrneurol.2010.130.
    1. Roriz-Filho J.S., Sá-Roriz T.M., Rosset I., Camozzato A.L., Santos A.C., Chaves M.L., Moriguti J.C., Roriz-Cruz M. (Pre)diabetes, brain aging, and cognition. Biochim. Biophys. Acta. 2009;1792:432–443. doi: 10.1016/j.bbadis.2008.12.003.
    1. Querfurth H.W., LaFerla F.M. Alzheimer’s disease. N. Engl. J. Med. 2010;362:329–344. doi: 10.1056/NEJMra0909142.
    1. Dollerup O.L., Christensen B., Svart M., Schmidt M.S., Sulek K., Ringgaard S., Stødkilde-Jørgensen H., Møller N., Brenner C., Treebak J.T., et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: Safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 2018;108:343–353. doi: 10.1093/ajcn/nqy132.
    1. Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G.M., Cooper N.R., Eikelenboom P., Emmerling M., Fiebich B.L., et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging. 2000;21:383–421. doi: 10.1016/S0197-4580(00)00124-X.
    1. Marioni R.E., Strachan M.W., Reynolds R.M., Lowe G.D., Mitchell R.J., Fowkes F.G., Frier B.M., Lee A.J., Butcher I., Rumley A., et al. Association between raised inflammatory markers and cognitive decline in elderly people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study. Diabetes. 2010;59:710–713. doi: 10.2337/db09-1163.
    1. Miao Y., He T., Zhu Y., Li W., Wang B., Zhong Y. Activation of Hippocampal CREB by Rolipram Partially Recovers Balance Between TNF-alpha and IL-10 Levels and Improves Cognitive Deficits in Diabetic Rats. Cell Mol. Neurobiol. 2015;35:1157–1164. doi: 10.1007/s10571-015-0209-3.
    1. Dutheil S., Ota K.T., Wohleb E.S., Rasmussen K., Duman R.S. High-Fat Diet Induced Anxiety and Anhedonia: Impact on Brain Homeostasis and Inflammation. Neuropsychopharmacology. 2016;41:1874–1887. doi: 10.1038/npp.2015.357.
    1. Kothari V., Luo Y., Tornabene T., O’Neill A.M., Greene M.W., Geetha T., Babu J.R. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:499–508. doi: 10.1016/j.bbadis.2016.10.006.
    1. Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–934. doi: 10.1016/j.cell.2010.02.016.
    1. Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140:821–832. doi: 10.1016/j.cell.2010.01.040.
    1. Vandanmagsar B., Youm Y.H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., Ravussin E., Stephens J.M., Dixit V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011;17:179–188. doi: 10.1038/nm.2279.
    1. Morbelli S., Piccardo A., Villavecchia G., Dessi B., Brugnolo A., Piccini A., Caroli A., Frisoni G., Rodriguez G., Nobili F. Mapping brain morphological and functional conversion patterns in amnestic MCI: A voxel-based MRI and FDG-PET study. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:36–45. doi: 10.1007/s00259-009-1218-6.
    1. Feng Y., Chu A., Luo Q., Wu M., Shi X., Chen Y. The Protective Effect of Astaxanthin on Cognitive Function via Inhibition of Oxidative Stress and Inflammation in the Brains of Chronic T2DM Rats. Front. Pharmacol. 2018;9:748. doi: 10.3389/fphar.2018.00748.
    1. Ghasemi A., Khalifi S., Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes. Acta Physiol. Hung. 2014;101:408–420. doi: 10.1556/APhysiol.101.2014.4.2.
    1. Deacon R.M. Assessing nest building in mice. Nat. Protoc. 2006;1:1117–1119. doi: 10.1038/nprot.2006.170.
    1. Kraeuter A.K., Guest P.C., Sarnyai Z. The Nest Building Test in Mice for Assessment of General Well-Being. Methods Mol. Biol. 2019;1916:87–91.

Source: PubMed

3
Předplatit