Understanding Human-Virus Protein-Protein Interactions Using a Human Protein Complex-Based Analysis Framework

Shiping Yang, Chen Fu, Xianyi Lian, Xiaobao Dong, Ziding Zhang, Shiping Yang, Chen Fu, Xianyi Lian, Xiaobao Dong, Ziding Zhang

Abstract

Computational analysis of human-virus protein-protein interaction (PPI) data is an effective way toward systems understanding the molecular mechanism of viral infection. Previous work has mainly focused on characterizing the global properties of viral targets within the entire human PPI network. In comparison, how viruses manipulate host local networks (e.g., human protein complexes) has been rarely addressed from a computational perspective. By mainly integrating information about human-virus PPIs, human protein complexes, and gene expression profiles, we performed a large-scale analysis of virally targeted complexes (VTCs) related to five common human-pathogenic viruses, including influenza A virus subtype H1N1, human immunodeficiency virus type 1, Epstein-Barr virus, human papillomavirus, and hepatitis C virus. We found that viral targets are enriched within human protein complexes. We observed in the context of VTCs that viral targets tended to have a high within-complex degree and to be scaffold and housekeeping proteins. Complexes that are essential for viral propagation were simultaneously targeted by multiple viruses. We characterized the periodic expression patterns of VTCs and provided the corresponding candidates that may be involved in the manipulation of the host cell cycle. As a potential application of the current analysis, we proposed a VTC-based antiviral drug target discovery strategy. Finally, we developed an online VTC-related platform known as VTcomplex (http://zzdlab.com/vtcomplex/index.php or http://systbio.cau.edu.cn/vtcomplex/index.php). We hope that the current analysis can provide new insights into the global landscape of human-virus PPIs at the VTC level and that the developed VTcomplex will become a vital resource for the community. IMPORTANCE Although human protein complexes have been reported to be directly related to viral infection, previous studies have not systematically investigated human-virus PPIs from the perspective of human protein complexes. To the best of our knowledge, we have presented here the most comprehensive and in-depth analysis of human-virus PPIs in the context of VTCs. Our findings confirm that human protein complexes are heavily involved in viral infection. The observed preferences of virally targeted subunits within complexes reflect the mechanisms used by viruses to manipulate host protein complexes. The identified periodic expression patterns of the VTCs and the corresponding candidates could increase our understanding of how viruses manipulate the host cell cycle. Finally, our proposed conceptual application framework of VTCs and the developed VTcomplex could provide new hints to develop antiviral drugs for the clinical treatment of viral infections.

Keywords: antiviral drug discovery; human-virus interaction; network; protein complex; protein-protein interaction.

Figures

FIG 1
FIG 1
Landscape of VTCs related to the five viruses. (A) Flowchart of experimental design. (B) Numbers of human-virus PPIs with the corresponding targets within and outside complexes. (C) Sizes of the VTCs related to the five viruses. (D) Jaccard indices corresponding to the target and VTC level for each virus. The corresponding Jaccard index of each virus was calculated using data from two high-throughput human-virus PPI studies.
FIG 2
FIG 2
Comparison of the topological and functional characteristics between viral targets and nontargets within VTCs. (A) Within-complex degree distributions of the proteins. (B) Within-complex degree distributions of the proteins targeted by single and multiple viruses. (C) Proportions of scaffold proteins. (D) Proportions of housekeeping proteins. (E) dN/dS distribution of the proteins. Values that are significantly different (P < 0.001) are indicated by three asterisks. Values that are not significantly different (P > 0.05) are indicated (NS). The P values in panels A, B, and E were calculated by one-tailed Wilcoxon rank sum test, and the P values in panels C and D were calculated by one-tailed two-proportion z-test.
FIG 3
FIG 3
Functional annotations of the VTCs. (A) Venn diagram shows the number of common and specific VTCs (VTsignificance < 0.05). Representative complex names are labeled; an example of VTCs with similar functions but that are comprised of different subunits is shown in red. (B) Overlap between all viruses’ VTCs and complexes containing innate immune-related proteins. (C) Overlap between HIV-1 VTCs and complexes containing HDFs. Three asterisks denote a P value of <0.001, and NS (not significantly different) denotes a P value of >0.05.
FIG 4
FIG 4
VTCs responding to viral infection. (A) Overlap between HIV-1 VTCs and DECs. (B) Numbers of different classes of HIV-1-targeted DECs. The gray region represents DECs with a VTsignificance of <0.05. (C) Selected HIV-1 significantly targeted DECs (VTsignificance < 0.05). A total of 81 upregulated or downregulated DECs are ranked according to the fraction of DEGs they contain. In addition, network representations of two DECs are provided. Nodes in purple represent upregulated genes, while nodes in blue represent downregulated genes. Circles represent human proteins, and V shapes represent viral proteins.
FIG 5
FIG 5
Temporal mapping of VTCs during the host cell cycle. (A) Overlap between VTCs and periodic complexes. (B) Proportions of virally targeted periodic complexes at different cell cycle phases. The colors indicate different cell cycle phases. For comparison, all periodic complexes were used as the background, and the PCC values between the proportions of virally targeted periodic complexes and the periodic complexes at different cell cycle phases were labeled for each virus. (C) Network representation of two experimentally validated periodic complexes involved in the manipulation of the host cell cycle. (D) Overlap among viral significantly targeted periodic complexes (VTsignificance < 0.05 and Periodicratio > 0.2) related to five viruses. (E) Periodic complexes targeted by multiple viruses during the G1, G1-S, S, S-G2, G2-M, or M-G1 phase (VTsignificance < 0.05 and Periodicratio > 0.2). The color scheme of nodes in panel B is also used in panels C and E.
FIG 6
FIG 6
Network representation of the identified anti-HIV-1 druggable complexes as well as the potential druggable targets and drugs. For the associated subnetworks (VTCs), the corresponding complex IDs and names are shown. Circles represent human proteins, V shapes represent viral proteins, and squares represent druggable targets. Nodes in purple represent upregulated genes, while nodes in blue represent downregulated genes.

References

    1. Ammari MG, Gresham CR, McCarthy FM, Nanduri B. 2016. HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford) 2016:baw103. doi:10.1093/database/baw103.
    1. Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM, Ewence AE, Li N, Hirozane-Kishikawa T, Hill DE, Vidal M, Kieff E, Johannsen E. 2007. Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 104:7606–7611. doi:10.1073/pnas.0702332104.
    1. de Chassey B, Navratil V, Tafforeau L, Hiet MS, Aublin-Gex A, Agaugue S, Meiffren G, Pradezynski F, Faria BF, Chantier T, Le Breton M, Pellet J, Davoust N, Mangeot PE, Chaboud A, Penin F, Jacob Y, Vidalain PO, Vidal M, Andre P, Rabourdin-Combe C, Lotteau V. 2008. Hepatitis C virus infection protein network. Mol Syst Biol 4:230. doi:10.1038/msb.2008.66.
    1. Yang S, Li H, He H, Zhou Y, Zhang Z. 2019. Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods. Brief Bioinform 20:274–287. doi:10.1093/bib/bbx123.
    1. Mariano R, Khuri S, Uetz P, Wuchty S. 2016. Local action with global impact: highly similar infection patterns of human viruses and bacteriophages. mSystems 1:e00030-15. doi:10.1128/mSystems.00030-15.
    1. Marsh JA, Teichmann SA. 2015. Structure, dynamics, assembly, and evolution of protein complexes. Annu Rev Biochem 84:551–575. doi:10.1146/annurev-biochem-060614-034142.
    1. Srihari S, Yong CH, Wong L. 2017. Computational prediction of protein complexes from protein interaction networks. ACM Books 16. Association for Computing Machinery, New York, NY. doi:10.1145/3064650.
    1. Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, Waegele B, Schmidt T, Doudieu ON, Stumpflen V, Mewes HW. 2007. CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 36:D646–D650. doi:10.1093/nar/gkm936.
    1. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes HW. 2010. CORUM: the comprehensive resource of mammalian protein complexes–2009. Nucleic Acids Res 38:D497–D501. doi:10.1093/nar/gkp914.
    1. Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, Ma Y, Wallingford JB, Marcotte EM. 2017. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol Syst Biol 13:932. doi:10.15252/msb.20167490.
    1. Wan C, Borgeson B, Phanse S, Tu F, Drew K, Clark G, Xiong X, Kagan O, Kwan J, Bezginov A, Chessman K, Pal S, Cromar G, Papoulas O, Ni Z, Boutz DR, Stoilova S, Havugimana PC, Guo X, Malty RH, Sarov M, Greenblatt J, Babu M, Derry WB, Tillier ER, Wallingford JB, Parkinson J, Marcotte EM, Emili A. 2015. Panorama of ancient metazoan macromolecular complexes. Nature 525:339–344. doi:10.1038/nature14877.
    1. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites LP, Ordureau A, Rad R, Erickson BK, Wuhr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar RA, Harris T, Artavanis-Tsakonas S, Sowa ME, De Camilli P, Paulo JA, Harper JW, Gygi SP. 2015. The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–440. doi:10.1016/j.cell.2015.06.043.
    1. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M. 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723. doi:10.1016/j.cell.2015.09.053.
    1. Walsh D, Mohr I. 2011. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 9:860–875. doi:10.1038/nrmicro2655.
    1. Hafirassou ML, Meertens L, Umana-Diaz C, Labeau A, Dejarnac O, Bonnet-Madin L, Kummerer BM, Delaugerre C, Roingeard P, Vidalain PO, Amara A. 2017. A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep 21:3900–3913. doi:10.1016/j.celrep.2017.11.094.
    1. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D’Orso I, Fernandes J, Fahey M, Mahon C, O’Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ. 2011. Global landscape of HIV-human protein complexes. Nature 481:365–370. doi:10.1038/nature10719.
    1. Wang J, Reuschel EL, Shackelford JM, Jeang L, Shivers DK, Diehl JA, Yu XF, Finkel TH. 2011. HIV-1 Vif promotes the G1- to S-phase cell-cycle transition. Blood 117:1260–1269. doi:10.1182/blood-2010-06-289215.
    1. Porcellini S, Gubinelli F, Alberici L, Piovani BM, Rizzardi GP, Bovolenta C. 2010. Chim3 confers survival advantage to CD4+ T cells upon HIV-1 infection by preventing HIV-1 DNA integration and HIV-1-induced G2 cell-cycle delay. Blood 115:4021–4029. doi:10.1182/blood-2009-09-243030.
    1. Ori A, Iskar M, Buczak K, Kastritis P, Parca L, Andres-Pons A, Singer S, Bork P, Beck M. 2016. Spatiotemporal variation of mammalian protein complex stoichiometries. Genome Biol 17:47. doi:10.1186/s13059-016-0912-5.
    1. GTEx Consortium. 2013. The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585. doi:10.1038/ng.2653.
    1. Dominguez D, Tsai YH, Gomez N, Jha DK, Davis I, Wang Z. 2016. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer. Cell Res 26:946–962. doi:10.1038/cr.2016.84.
    1. Watanabe T, Kawakami E, Shoemaker JE, Lopes TJS, Matsuoka Y, Tomita Y, Kozuka-Hata H, Gorai T, Kuwahara T, Takeda E, Nagata A, Takano R, Kiso M, Yamashita M, Sakai-Tagawa Y, Katsura H, Nonaka N, Fujii H, Fujii K, Sugita Y, Noda T, Goto H, Fukuyama S, Watanabe S, Neumann G, Oyama M, Kitano H, Kawaoka Y. 2014. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16:795–805. doi:10.1016/j.chom.2014.11.002.
    1. Ma W, Zhang L, Zeng P, Huang C, Li J, Geng B, Yang J, Kong W, Zhou X, Cui Q. 2017. An analysis of human microbe-disease associations. Brief Bioinform 18:85–97. doi:10.1093/bib/bbw005.
    1. Lou Z, Sun Y, Rao Z. 2014. Current progress in antiviral strategies. Trends Pharmacol Sci 35:86–102. doi:10.1016/j.tips.2013.11.006.
    1. de Chassey B, Meyniel-Schicklin L, Vonderscher J, André P, Lotteau V. 2014. Virus-host interactomics: new insights and opportunities for antiviral drug discovery. Genome Med 6:115. doi:10.1186/s13073-014-0115-1.
    1. Keener AB. 2017. Host with the most: targeting host cells instead of pathogens to fight infectious disease. Nat Med 23:528–531. doi:10.1038/nm0517-528.
    1. Mika S, Rost B. 2006. Protein-protein interactions more conserved within species than across species. PLoS Comput Biol 2:e79. doi:10.1371/journal.pcbi.0020079.
    1. Sen R, Nayak L, De RK. 2016. A review on host-pathogen interactions: classification and prediction. Eur J Clin Microbiol Infect Dis 35:1581–1599. doi:10.1007/s10096-016-2716-7.
    1. Good MC, Zalatan JG, Lim WA. 2011. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686. doi:10.1126/science.1198701.
    1. Eisenberg E, Levanon EY. 2003. Human housekeeping genes are compact. Trends Genet 19:362–365. doi:10.1016/S0168-9525(03)00140-9.
    1. Emig-Agius D, Olivieri K, Pache L, Shih HL, Pustovalova O, Bessarabova M, Young JA, Chanda SK, Ideker T. 2014. An integrated map of HIV-human protein complexes that facilitate viral infection. PLoS One 9:e96687. doi:10.1371/journal.pone.0096687.
    1. Dubois J, Terrier O, Rosa-Calatrava M. 2014. Influenza viruses and mRNA splicing: doing more with less. mBio 5:e00070-14. doi:10.1128/mBio.00070-14.
    1. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ. 2008. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926. doi:10.1126/science.1152725.
    1. Takeuchi O, Akira S. 2009. Innate immunity to virus infection. Immunol Rev 227:75–86. doi:10.1111/j.1600-065X.2008.00737.x.
    1. Sherrill-Mix S, Ocwieja KE, Bushman FD. 2015. Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 12:79. doi:10.1186/s12977-015-0205-1.
    1. Kawaguchi A, Nagata K. 2007. De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J 26:4566–4575. doi:10.1038/sj.emboj.7601881.
    1. de Lichtenberg U, Jensen LJ, Brunak S, Bork P. 2005. Dynamic complex formation during the yeast cell cycle. Science 307:724–727. doi:10.1126/science.1105103.
    1. Rice AP, Kimata JT. 2015. Subversion of cell cycle regulatory mechanisms by HIV. Cell Host Microbe 17:736–740. doi:10.1016/j.chom.2015.05.010.
    1. Mosier DE. 2009. How HIV changes its tropism: evolution and adaptation? Curr Opin HIV AIDS 4:125–130. doi:10.1097/COH.0b013e3283223d61.
    1. Davy CE, Jackson DJ, Raj K, Peh WL, Southern SA, Das P, Sorathia R, Laskey P, Middleton K, Nakahara T, Wang Q, Masterson PJ, Lambert PF, Cuthill S, Millar JB, Doorbar J. 2005. Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol 79:3998–4011. doi:10.1128/JVI.79.7.3998-4011.2005.
    1. Matalon O, Horovitz A, Levy ED. 2014. Different subunits belonging to the same protein complex often exhibit discordant expression levels and evolutionary properties. Curr Opin Struct Biol 26:113–120. doi:10.1016/j.sbi.2014.06.001.
    1. Phelan JD, Young RM, Webster DE, Roulland S, Wright GW, Kasbekar M, Shaffer AL III, Ceribelli M, Wang JQ, Schmitz R, Nakagawa M, Bachy E, Huang DW, Ji Y, Chen L, Yang Y, Zhao H, Yu X, Xu W, Palisoc MM, Valadez RR, Davies-Hill T, Wilson WH, Chan WC, Jaffe ES, Gascoyne RD, Campo E, Rosenwald A, Ott G, Delabie J, Rimsza LM, Rodriguez FJ, Estephan F, Holdhoff M, Kruhlak MJ, Hewitt SM, Thomas CJ, Pittaluga S, Oellerich T, Staudt LM. 2018. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560:387–391. doi:10.1038/s41586-018-0290-0.
    1. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. doi:10.1093/nar/gkx1037.
    1. Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q, Fu T, Zhang X, Cui X, Tu G, Zhang Y, Li S, Yang F, Sun Q, Qin C, Zeng X, Chen Z, Chen YZ, Zhu F. 2018. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 46:D1121–D1127. doi:10.1093/nar/gkx1076.
    1. Krishnan MN, Garcia-Blanco MA. 2014. Targeting host factors to treat West Nile and dengue viral infections. Viruses 6:683–708. doi:10.3390/v6020683.
    1. Liu Y, Xie D, Han L, Bai H, Li F, Wang S, Bo X. 2015. EHFPI: a database and analysis resource of essential host factors for pathogenic infection. Nucleic Acids Res 43:D946–D955. doi:10.1093/nar/gku1086.
    1. Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, Wollam A, Spies NC, Griffith OL, Griffith M. 2018. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res 46:D1068–D1073. doi:10.1093/nar/gkx1143.
    1. Wang ZY, Fu LY, Zhang HY. 2012. Can medical genetics and evolutionary biology inspire drug target identification? Trends Mol Med 18:69–71. doi:10.1016/j.molmed.2011.11.004.
    1. Cheng F, Murray JL, Zhao J, Sheng J, Zhao Z, Rubin DH. 2016. Systems biology-based investigation of cellular antiviral drug targets identified by gene-trap insertional mutagenesis. PLoS Comput Biol 12:e1005074. doi:10.1371/journal.pcbi.1005074.
    1. Pan J, Meyers RM, Michel BC, Mashtalir N, Sizemore AE, Wells JN, Cassel SH, Vazquez F, Weir BA, Hahn WC, Marsh JA, Tsherniak A, Kadoch C. 2018. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. Cell Syst 6:555–568. doi:10.1016/j.cels.2018.04.011.
    1. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O’Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M. 2017. The BioGRID interaction database: 2017 update. Nucleic Acids Res 45:D369–D379. doi:10.1093/nar/gkw1102.
    1. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. 2012. The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846. doi:10.1093/nar/gkr1088.
    1. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. 2004. The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451. doi:10.1093/nar/gkh086.
    1. Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang T-C, Zhong J, Wu X, Shaw PG, Freed D, et al. . 2014. A draft map of the human proteome. Nature 509:575–581. doi:10.1038/nature13302.
    1. Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR. 2015. Gene essentiality and synthetic lethality in haploid human cells. Science 350:1092–1096. doi:10.1126/science.aac7557.
    1. Han X, Wang J, Wang J, Liu S, Hu J, Zhu H, Qian J. 2017. ScaPD: a database for human scaffold proteins. BMC Bioinformatics 18:386. doi:10.1186/s12859-017-1806-6.
    1. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK. 2008. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60. doi:10.1016/j.cell.2008.07.032.
    1. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS. 2008. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504. doi:10.1016/j.chom.2008.10.004.
    1. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ. 2013. InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41:D1228–D1233. doi:10.1093/nar/gks1147.
    1. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J. 2016. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 44:W83–W89. doi:10.1093/nar/gkw199.
    1. Vinayagam A, Hu Y, Kulkarni M, Roesel C, Sopko R, Mohr SE, Perrimon N. 2013. Protein complex-based analysis framework for high-throughput data sets. Sci Signal 6:rs5. doi:10.1126/scisignal.2003629.
    1. Santos A, Wernersson R, Jensen LJ. 2015. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 43:D1140–D1144. doi:10.1093/nar/gku1092.

Source: PubMed

3
Předplatit