Genetic variants in PI3K/AKT pathway are associated with severe radiation pneumonitis in lung cancer patients treated with radiation therapy

Yang Tang, Bo Liu, Jing Li, Huanlei Wu, Ju Yang, Xiao Zhou, Mingxiao Yi, Qianxia Li, Shiying Yu, Xianglin Yuan, Yang Tang, Bo Liu, Jing Li, Huanlei Wu, Ju Yang, Xiao Zhou, Mingxiao Yi, Qianxia Li, Shiying Yu, Xianglin Yuan

Abstract

PI3K/AKT pathway plays important roles in inflammatory and fibrotic diseases while its connection to radiation pneumonitis (RP) is unclear. In this study, we explored the associations of genetic variants in PI3K/AKT pathway with RP in lung cancer patients with radiotherapy. Two hundred and sixty one lung cancer patients with radiotherapy were included in this prospective study (NCT02490319) and genotyped by MassArray and Sanger Sequence methods. By multivariate Cox hazard analysis and multiple testing, GA/GG genotype of AKT2: rs33933140 (HR = 0.272, 95% CI: 0.140-0.530, P = 1.3E-4, Pc = 9.1E-4), and the GT/GG genotype of PI3CA: rs9838117 (HR = 0.132, 95% CI: 0.042-0.416, P = 0.001, Pc = 0.006) were found to be strongly associated with a decreased occurrence of RP ≥ grade 3. And patients with the CT/TT genotype of AKT2: rs11880261 had a notably higher incidence of RP ≥ grade 3 (HR = 2.950, 95% CI: 1.380-6.305, P = 0.005, Pc = 0.025). We concluded that the genetic variants of PI3K/AKT pathway were significantly related to RP of grade ≥ 3 and may thus be predictors of severe RP before radiotherapy, if further validated in larger population.

Keywords: AKT; PI3CA; PI3K; SNP; lung cancer; radiation pneumonitis.

© 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Patient flow diagram.
Figure 2
Figure 2
Kaplan–Meier estimates RP‐free survival (RP ≥ grade 3) for each genotype. (A) PI3CA: rs9838117; (B) AKT2: rs11880261 (C) AKT2: rs33933140. Patients with GT/GG genotype of PI3CA: rs9838117 (= 0.0005), the CC genotype of AKT2: rs11880261 (= 0.006), and the GA/GG genotype of AKT2: rs33933140 (= 0.0001) had significantly lower risks of RP ≥ grade 3.
Figure 3
Figure 3
Kaplan–Meier estimates effect of genotype in rs33933140 and dosimetric parameters on RP‐free survival (RP ≥ grade 3). (A) rs33933140 and MLD; (B) rs33933140 and V20. Patients with AA genotype of AKT2: rs33933140 and MLD ≥ 15 Gy or V20 ≥ 24% had the highest risk of RP grade ≥ 3 compared with other groups (< 0.0001 and < 0.0001, respectively).

References

    1. Lancet, T. 2013. Lung cancer: a global scourge. Lancet 382:659.
    1. Siegel, R. , Ma J., Zou Z., and Jemal A.. 2014. Cancer statistics, 2014. CA Cancer J. Clin. 64:9–29.
    1. Ehta, V. I. M. 2005. Radiation pneumonitis and pulmonary fibrosis in non‐small‐cell lung cancer: pulmonary function, prediction, and prevention. Int. J. Radiat. Oncol. Biol. Phys. 63:5–24.
    1. Yarnold, J. , and Vozenin Brotons M. C.. 2010. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97:149–161.
    1. Marks, L. B. , Bentzen S. M., Deasy J. O., Kong F. M., Bradley J. D., Vogelius I. S., et al. 2010. Radiation dose volume effects in the lung. Int. J. Radiat. Oncol. Biol. Phys. 76(3 Suppl):70–76.
    1. Marks, L. B. , Yu X., Vujaskovic Z., Small W. Jr, Folz R., and Anscher M. S.. 2003. Radiation‐induced lung injury. Int. J. Radiat. Oncol. Biol. Phys. 13:333–345.
    1. Zhang, X.‐J. , Sun J.‐G., Sun J., Ming H., Wang X.‐X., Wu L., et al. 2012. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J. Cancer Res. Clin. Oncol. 138:2103–2116.
    1. Vogelius, I. R. B. S. 2012. A literature‐based meta‐analysis of clinical risk factours for development of radiation induced pneumonitis. Acta Oncol. 51:975–983.
    1. Palma, D. A. , Senan S., Tsujino K., Barriger R. B., Rengan R., Moreno M., et al. 2013. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta‐analysis. Int. J. Radiat. Oncol. Biol. 85:444–450.
    1. Zhao, L. , Wang L., Ji W., Wang X., Zhu X., Hayman J. A., et al. 2009. Elevation of plasma TGF‐beta1 during radiation therapy predicts radiation‐induced lung toxicity in patients with non‐small‐cell lung cancer: a combined analysis from Beijing and Michigan. Int. J. Radiat. Oncol. Biol. Phys. 74:1385–1390.
    1. Palmer, J. D. , Zaorsky N. G., Witek M., and Lu B.. 2014. Molecular markers to predict clinical outcome and radiation induced toxicity in lung cancer. J. Thorac. Dis. 6:387–398.
    1. Andreassen, C. N. , and Alsner J.. 2009. Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother. Oncol. 92:299–309.
    1. Yang, M. , Zhang L., Bi N., Ji W., Tan W., Zhao L., et al. 2011. Association of P53 and ATM polymorphisms with risk of radiation‐induced pneumonitis in lung cancer patients treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 79:1402–1407.
    1. Yuan, X. , Liao Z., Liu Z., Wang L., Tucker S. L., Mao L., et al. 2009. Single nucleotide polymorphism at rs1982073: T869C of the TGFB1 gene is associated with the risk of radiation pneumonitis in patients with non – small‐cell lung cancer treated with definitive radiotherapy. J. Clin. Oncol. 27:3370–3378.
    1. Hawkins, P. T. , and Stephens L. R.. 2014. PI3K signalling in inflammation. Biochim. Biophys. Acta – Mol. Cell. Biol. Lipids 1851:882–897.
    1. Foster, J. G. , Blunt M. D., Carter E., and Ward S. G.. 2012. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol. Rev. 64:1027–1054.
    1. Ghigo, A. , Damilano F., Braccini L., and Hirsch E.. 2010. PI3K inhibition in inflammation: toward tailored therapies for specific diseases. BioEssays 32:185–196.
    1. Birkenkamp, K. U. , and Coffer P. J.. 2003. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J. Immunol. 171:1623–1629.
    1. Yan, Z. , Kui Z., and Ping Z.. 2014. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun. Rev. 13:1020–1025.
    1. Miyoshi, K. , Yanagi S., Kawahara K., Nishio M., Tsubouchi H., Imazu Y., et al. 2013. Epithelial pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am. J. Respir. Crit. Care Med. 187:262–275.
    1. Barber, A. G. , Castillo‐Martin M., Bonal D. M., Jia A. J., Rybicki B. A., Christiano A. M., et al. 2015. PI3K/AKT pathway regulates E‐cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med. 4:1258–1271.
    1. Nho, R. S. , Peterson M., Hergert P., and Henke C. A.. 2013. FoxO3a (Forkhead Box O3a) deficiency protects idiopathic pulmonary fibrosis (IPF) fibroblasts from type I polymerized collagen matrix‐induced apoptosis via caveolin‐1 (cav‐1) and Fas. PLoS ONE 8:1–16.
    1. Kwon, J. M. , and Goate A. M.. 2000. The candidate gene approach. Alcohol Res. Health 24:164–168.
    1. Kim, T. H. , Cho K. H., Pyo H. R., Lee J. S., Zo J. I., Lee D. H., et al. 2005. Dose‐volumetric parameters for predicting severe radiation pneumonitis after three‐dimensional conformal radiation therapy for lung cancer. Radiology 235:208–215.
    1. Fruman, D. A. R. C. 2014. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13:140–156.
    1. Li, Q. , Yang J., Yu Q., Wu H., Liu B., Xiong H., et al. 2013. Associations between single‐nucleotide polymorphisms in the PI3K‐PTEN‐AKT‐mTOR pathway and increased risk of brain metastasis in patients with non‐small cell lung cancer. Clin. Cancer Res. 19:6252–6260.
    1. Stjernstrom, A. , Karlsson C., Fernandez O. J., Soderkvist P., Karlsson M. G., and Thunell L. K.. 2014. Alterations of INPP4B, PIK3CA and pAkt of the PI3K pathway are associated with squamous cell carcinoma of the lung. Cancer Med. 3:337–348.
    1. So, L. , and Fruman D. A.. 2012. PI3K signalling in B‐ and T‐lymphocytes: new developments and therapeutic advances. Biochem J. 442:465–481.
    1. Okkenhaug, K. 2013. Signaling by the phosphoinositide 3‐kinase family in immune cells. Annu. Rev. Immunol. 31:675–704.
    1. Conte, E. , Gili E., Fruciano M., Korfei M., Fagone E., Iemmolo M., et al. 2013. PI3K p110γ overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: in vitro effects of its inhibition. Lab. Invest. 93:566–576.
    1. Nho, R. S. , Hergert P., Kahm J., Jessurun J., and Henke C.. 2011. Pathological alteration of FoxO3a activity promotes idiopathic pulmonary fibrosis fibroblast proliferation on type I collagen matrix. Am. J. Pathol. 179:2420–2430.
    1. Conte, E. , Fruciano M., Fagone E., Gili E., Caraci F., Iemmolo M., et al. 2011. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class I P110 isoforms. PLoS ONE 6:e24663.
    1. Norman, P. 2014. Evaluation of WO2013117503 and WO2013117504: the use of PI3K inhibitors to treat cough or idiopathic pulmonary fibrosis. Expert Opin. Ther. Pat. 24:719–722.

Source: PubMed

3
Předplatit