Brigatinib versus other second-generation ALK inhibitors as initial treatment of anaplastic lymphoma kinase positive non-small cell lung cancer with deep phenotyping: study protocol of the ABP trial

Petros Christopoulos, Farastuk Bozorgmehr, Lena Brückner, Inn Chung, Johannes Krisam, Marc A Schneider, Albrecht Stenzinger, Regina Eickhoff, Daniel W Mueller, Michael Thomas, Petros Christopoulos, Farastuk Bozorgmehr, Lena Brückner, Inn Chung, Johannes Krisam, Marc A Schneider, Albrecht Stenzinger, Regina Eickhoff, Daniel W Mueller, Michael Thomas

Abstract

Background: Availability of potent anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKI) has pushed the median survival of ALK+ non-smallcell lung cancer (NSCLC) patients to over five years. In particular, second-generation ALK TKI have demonstrated superiority compared to the first-generation compound crizotinib and are meanwhile standard first-line treatment. However, clinical courses of individual patients vary widely, with secondary development of drug resistance and intracranial progression remaining important problems. While these limitations highlight the need for better disease monitoring and additional therapeutic tools, molecular tumor features are increasingly recognized as crucial determinants of clinical outcome. This trial aims to optimize management of ALK+ NSCLC by analyzing the efficacy of second-generation ALK inhibitors in conjunction with deep longitudinal phenotyping across two treatment lines.

Methods/design: In this exploratory prospective phase II clinical trial, newly diagnosed ALK+ NSCLC patients will be randomized into two treatment arms, stratified by presence of brain metastases and ECOG performance status: brigatinib (experimental arm) vs. any other approved second-generation ALK TKI. Tumor tissue and blood samples will be collected for biomarker analysis at the beginning and throughout the study period to investigate baseline molecular tumor properties and analyze the development of acquired drug resistance. In addition, participating investigators and patients will have the possibility of fast-track molecular tumor and ctDNA profiling at the time of disease progression using state-of-the-art next-generation sequencing (NGS), in order to support decisions regarding next-line therapy.

Discussion: Besides supporting therapeutic decisions for enrolled patients, the ABP trial primarily aims to deepen the understanding of the underlying biology and facilitate development of a framework for individualized management of ALK+ NSCLC according to molecular features. Patients with low molecular risk and the perspective of a "chronic disease" will be distinguished from "high-risk" cases, molecular properties of which will be utilized to elaborate improved methods of non-invasive monitoring and novel preclinical models in order to advance therapeutic strategies.

Trial registration: Clinicaltrials.gov , NCT04318938. Registered March 182,020, https://www.clinicaltrials.gov/ct2/show/NCT04318938 Eudra-CT, 2019-001828-36. Registered September 302,019, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2019-001828-36.

Keywords: ALK+ NSCLC; Anaplastic lymphoma kinase; Brigatinib; Molecular risk; Non-small cell lung cancer; Resistance mutations; Tyrosine kinase inhibitors (TKI).

Conflict of interest statement

The ABP trial receives funding from the pharmaceutical company Takeda. However, Takeda has not been involved in study design, data collection, management, data analysis and interpretation, or in the decision to submit this protocol for publication. PC reports research funding from AstraZeneca, Novartis, Roche, Takeda, and advisory board/lecture fees from AstraZeneca, Boehringer Ingelheim, Chugai, Novartis, Pfizer, Roche, Takeda. FB reports research funding from BMS and travel grants from BMS and MSD. AS receives advisory board honoraria from BMS, AstraZeneca, ThermoFisher, Novartis, speaker’s honoraria from BMS, Illumina, AstraZeneca, Novartis, ThermoFisher, MSD, Roche, and research funding from Chugai. MT reports advisory board honoraria from Novartis, Lilly, BMS, MSD, Roche, Celgene, Takeda, AbbVie, Boehringer, speaker’s honoraria from Lilly, MSD, Takeda, research funding from AstraZeneca, BMS, Celgene, Novartis, Roche and travel grants from BMS, MSD, Novartis, Boehringer. All other authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1
Study design. Eligible patients are randomized into the two treatment arms stratified by presence of brain metastases and ECOG performance status. First-line treatment in arm B is brigatinib, in arm A it is any other second-generation TKI of the investigator’s choice. All subsequent TKI will be chosen by the investigator and should take into account molecular tumor profiles upon progression. After the end of study treatment, patients will be followed-up for toxicity and survival. R: randomization, PD: progressive disease, TKI: tyrosine kinase inhibitor, FU: follow-up

References

    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. 10.3322/caac.20107.
    1. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv192–237.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590.
    1. Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 2015;16(7):e342–e351. doi: 10.1016/S1470-2045(15)00077-7.
    1. Shaw AT, Engelman JA. ALK in lung cancer: past, present, and future. J Clin Oncol. 2013;31(8):1105–1111. doi: 10.1200/JCO.2012.44.5353.
    1. Christopoulos P, Budczies J, Kirchner M, Dietz S, Sultmann H, Thomas M, et al. Defining molecular risk in ALK(+) NSCLC. Oncotarget. 2019;10(33):3093–103. 10.18632/oncotarget.26886.
    1. Spigel DR, Schrock AB, Fabrizio D, Frampton GM, Sun J, He J, et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J Clin Oncol. 2016;34(15_suppl):9017–7.
    1. Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056–64. 10.1016/j.annonc.2020.04.478.
    1. Solomon BJ, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, Felip E, et al. Final overall survival analysis from a study comparing first-line Crizotinib versus chemotherapy in ALK-mutation-positive non–small-cell lung Cancer. J Clin Oncol. 2018;36(22):2251–8. 10.1200/JCO.2017.77.4794.
    1. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with Osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50. 10.1056/NEJMoa1913662.
    1. Camidge DR, Kim HR, Ahn MJ, Yang JCH, Han JY, Hochmair MJ, Lee KH, Delmonte A, García Campelo MR, Kim DW, Griesinger F, Felip E, Califano R, Spira A, Gettinger SN, Tiseo M, Lin HM, Gupta N, Hanley MJ, Ni Q, Zhang P, Popat S. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J Clin Oncol. 2020;38(31):3592-3603. 10.1200/JCO.20.00505. Epub 2020 Aug 11.
    1. Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, et al. Brigatinib versus Crizotinib in ALK-positive non-small-cell lung Cancer. N Engl J Med. 2018;379(21):2027–39. 10.1056/NEJMoa1810171.
    1. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(5):863–70. 10.1093/annonc/mdy474.
    1. ESMO Clinical Practice Living Guidelines - Metastatic Non-Small-Cell Lung Cancer. . Accessed Nov 2020.
    1. Solomon B, Bauer TM, De Marinis F, Felip E, Goto Y, Liu G, et al. LBA2 Lorlatinib vs crizotinib in the first-line treatment of patients (pts) with advanced ALK-positive non-small cell lung cancer (NSCLC): results of the phase III CROWN study. Ann Oncol. 2020;31:S1180–1. 10.1016/j.annonc.2020.08.2282.
    1. Woo CG, Seo S, Kim SW, Jang SJ, Park KS, Song JY, et al. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann Oncol. 2017;28(4):791–7. 10.1093/annonc/mdw693.
    1. O'Regan L, Barone G, Adib R, Woo CG, Jeong HJ, Richardson EL, Richards MW, Muller PAJ, Collis SJ, Fennell DA, Choi J, Bayliss R, Fry AM. EML4- ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7. J Cell Sci. 2020;133(9):jcs241505. 10.1242/jcs.241505.
    1. Christopoulos P, Endris V, Bozorgmehr F, Elsayed M, Kirchner M, Ristau J, et al. EML4-ALK fusion variant V3 is a high-risk feature conferring accelerated metastatic spread, early treatment failure and worse overall survival in ALK+ non-small cell lung cancer. Int J Cancer. 2018;142(12):2589–98. 10.1002/ijc.31275.
    1. Christopoulos P, Kirchner M, Endris V, Stenzinger A, Thomas M. EML4-ALK V3, treatment resistance, and survival: refining the diagnosis of ALK + NSCLC. J Thorac Dis. 2018;10(S16):S1989–91. 10.21037/jtd.2018.05.61.
    1. Bayliss R, Choi J, Fennell DA, Fry AM, Richards MW. Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell Mol Life Sci. 2016;73(6):1209–24. 10.1007/s00018-015-2117-6.
    1. Kron A, Alidousty C, Scheffler M, Merkelbach-Bruse S, Seidel D, Riedel R, et al. Impact of TP53 mutation status on systemic treatment outcome in ALK-rearranged non-small-cell lung cancer. Ann Oncol. 2018;29(10):2068–75. 10.1093/annonc/mdy333.
    1. Christopoulos P, Kirchner M, Bozorgmehr F, Endris V, Elsayed M, Budczies J, et al. Identification of a highly lethal V3(+) TP53(+) subset in ALK(+) lung adenocarcinoma. Int J Cancer. 2019;144(1):190–9. 10.1002/ijc.31893.
    1. Christopoulos P, Dietz S, Kirchner M, Volckmar AL, Endris V, Neumann O, Ogrodnik S, Heussel CP, Herth FJ, Eichhorn M, Meister M, Budczies J, Allgäuer M, Leichsenring J, Zemojtel T, Bischoff H, Schirmacher P, Thomas M, Sültmann H, Stenzinger A. Detection of TP53 Mutations in Tissue or Liquid Rebiopsies at Progression Identifies ALK+ Lung Cancer Patients with Poor Survival. Cancers (Basel). 2019;11(1):124. 10.3390/cancers11010124.
    1. Camidge DR, Niu H, Kim HR, Yang JC-H, Ahn M-J, Li JY-C, et al. Correlation of baseline molecular and clinical variables with ALK inhibitor efficacy in ALTA-1L. J Clin Oncol. 2020;38(15_suppl):9517–7.
    1. McCoach CE, Blakely CM, Banks KC, Levy B, Chue BM, Raymond VM, et al. Clinical utility of cell-free DNA for the detection of ALK fusions and genomic mechanisms of ALK inhibitor resistance in non-small cell lung Cancer. Clin Cancer Res. 2018;24(12):2758–70. 10.1158/1078-0432.CCR-17-2588.
    1. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung Cancer. Cancer Discov. 2016;6(10):1118–33. 10.1158/-16-0596.
    1. Dietz S, Christopoulos P, Yuan Z, Angeles AK, Gu L, Volckmar AL, Ogrodnik SLJ, Janke F, Fratte CD, Zemojtel T, Schneider MA, Kazdal D, Endris V, Meister M, Muley T, Cecchin E, Reck M, Schlesner M, Thomas M, Stenzinger A, Sültmann H. Longitudinal therapy monitoring of ALK-positive lung cancer by combined copy number and targeted mutation profiling of cell-free DNA. EBioMedicine. 2020;62:103103.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. 10.1016/j.ejca.2008.10.026.
    1. Buttner R, Wolf J, Kron A, Nationales Netzwerk Genomische M The national Network Genomic Medicine (nNGM) : Model for innovative diagnostics and therapy of lung cancer within a public healthcare system. Pathologe. 2019;40(3):276–280. doi: 10.1007/s00292-019-0605-4.
    1. Volckmar AL, Leichsenring J, Kirchner M, Christopoulos P, Neumann O, Budczies J, et al. Combined targeted DNA and RNA sequencing of advanced NSCLC in routine molecular diagnostics: analysis of the first 3,000 Heidelberg cases. Int J Cancer. 2019;145(3):649–61. 10.1002/ijc.32133.
    1. Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010;16(5):1561–71. 10.1158/1078-0432.CCR-09-2845.
    1. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus Crizotinib in untreated ALK-positive non-small-cell lung Cancer. N Engl J Med. 2017;377(9):829–38. 10.1056/NEJMoa1704795.
    1. Camidge DR, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of Alectinib in untreated ALK-positive advanced non-small cell lung Cancer in the global phase III ALEX study. J Thorac Oncol. 2019;14(7):1233–43. 10.1016/j.jtho.2019.03.007.
    1. Solomon B, Shaw A, Ou S. OA 05.06 Phase 2 Study of Lorlatinib in Patients with Advanced ALK+/ROS1+ Non-Small-Cell Lung Cancer. J Thorac Oncol. 2017;12(11):1756. doi: 10.1016/j.jtho.2017.09.351.
    1. Schoenfeld D. The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika. 1981;68(1):316–319. doi: 10.1093/biomet/68.1.316.
    1. Wassmer G. Planning and analyzing adaptive group sequential survival trials. Biom J. 2006;48(4):714–729. doi: 10.1002/bimj.200510190.

Source: PubMed

3
Předplatit