Uncemented monoblock trabecular metal posterior stabilized high-flex total knee arthroplasty: similar pattern of migration to the cruciate-retaining design - a prospective radiostereometric analysis (RSA) and clinical evaluation of 40 patients (49 knees) 60 years or younger with 9 years' follow-up

Radoslaw Wojtowicz, Anders Henricson, Kjell G Nilsson, Sead Crnalic, Radoslaw Wojtowicz, Anders Henricson, Kjell G Nilsson, Sead Crnalic

Abstract

Background and purpose - Uncemented monoblock cruciate retaining (CR) trabecular metal (TM) tibial components in total knee arthroplasty (TKA) work well in the long-term perspective in patients ≤ 60 years. Younger persons expect nearly normal knee flexion after TKA, but CR implants generally achieve less knee flexion compared with posterior stabilized (PS) implants. Cemented PS implants have higher revision rate than CR implants. Can an uncemented monoblock PS TM implant be used safely in younger patients? Patients and methods - 40 patients (49 knees) age ≤ 60 years with primary (20 knees) or posttraumatic osteoarthritis (OA) were operated with a high-flex TKA using an uncemented monoblock PS TM tibial component. Knees were evaluated with radiostereometric analysis (RSA) a mean 3 days (1-5) postoperatively, and thereafter at 6 weeks, 3 months, 1, 2, 5, and 9 years. Clinical outcome was measured with patient-related outcome measures (PROMs). Results - The implants showed a pattern of migration with initial large migration followed by early stabilization lasting up to 9 years, a pattern known to be compatible with good long-term results. Clinical and radiological outcome was excellent with 38 of the 40 patients being satisfied or very satisfied with the procedure and bone apposition to the entire implant surface in 46 of 49 knees. Mean knee flexion was 130°. 1 knee was revised at 3 months due to medial tibial condyle collapse. Interpretation - The uncemented monoblock PS TM implant works well in younger persons operated with TKA due to primary or secondary OA.

Figures

Figure 1.
Figure 1.
Flowchart of the patients. TKA = total knee arthroplasty, RSA = radiostereometric analysis.
Figure 2.
Figure 2.
Maximum migration (MTPM) for the NexGen Trabecular Metal posterior stabilized (PS) monoblock tibial component (red). For comparison values for the cruciate retaining (CR) variety of the same implant (blue) (Henricson and Nilsson 2016). Values are mean (95% confidence interval).
Figure 3.
Figure 3.
Maximum subsidence (negative y-axis translation) for the NexGen Trabecular Metal posterior stabilized (PS) monoblock tibial component (red). For legend, see Figure 2.
Figure 4.
Figure 4.
Rotation around the transverse (x-) axis of the knee (absolute values). For legend, see Figure 2. The majority of the TM PS implants rotated into posterior tilt.
Figure 5.
Figure 5.
Rotation around the longitudinal (y-) axis of the knee (absolute values). For legend, see Figure 2. The majority of the TM PS implants rotated externally.
Figure 6.
Figure 6.
Rotation around the sagittal (z-) axis of the knee (absolute values). For legend, see Figure 2. Rotation into varus or valgus was evenly distributed among the TM PS implants.
Figure 7.
Figure 7.
Individual MTPM values for the TM PS implants.

References

    1. Behery O A, Kearns S M, Rabonowitz J M, Levine B R. Cementless vs cemented tibial fixation in primary total knee arthroplasty. J Arthroplasty 2017; 32: 1510–15.
    1. Behrend H, Giesinger K, Giesinger J M, Kuster M S. The “forgotten joint” as the ultimate goal in joint arthroplasty: validation of a new patient-reported outcome measure. J Arthroplasty 2012; 27: 430–6.
    1. Bellemans J. Osseointegration in porous coated knee arthroplasty: the influence of component coating type in sheep. Acta Orthop Scand 1999; (Suppl. 288): 1–35.
    1. Bercik M J, Joshi A, Parvizi J. Posterior cruciate-retaining versus posterior-stabilized total knee arthroplasty – a meta-analysis. J Arthroplasty 2013; 28: 439–44.
    1. Bullens H J, Screader H W B, de Waal Malefijt M C, Verdonschot N, Buma P. The presence of periosteum is essential for the healing of large diaphyseal segmental defects reconstructed with trabecular metal: a study in the femur of goats. J Biomed Mater Res B Appl Biomater 2010; 92: 24–31.
    1. Catani F, Leardini A, Ensini A, Cucca G, Bragonzoni L, Toksvig-Larsen S, Giannini S. The stability of the cemented tibial component of total knee arthroplasty: posterior cruciate-retaining versus posterior-stabilized design. J Arthroplasty 2004; 19: 775–82.
    1. Comfort T, Baste V, Froufe M A, Namba R, Bordini B, Robertsson O, Cafri G, Paxton E, Sedrakyan A, Graves S. International comparative evaluation of fixed-bearing non-posterior-stabilized and posterior-stabilized total knee replacements. J Bone Joint Surg Am 2014; 96 (Suppl. (E)): 65–72.
    1. Fernandez-Fairen M, Hernández-Vaquero D, Murcia A, Llopis R. Trabecular metal in total knee arthroplasty associated with higher knee scores: a randomized controlled trial. Clin Orthop Relat Res 2013; 471: 3543–53.
    1. Hanzlik J A, Day J S, et al. . Bone ingrowth in well-fixed retrieved porous tantalum implants. J Arthroplasty 2013; 28: 922–7.
    1. Hayakawa K, Date H, Tsujimura S, Nojiri S, Yamada H, Nakagawa K. Mid-term results of total knee arthroplasty with a porous tantalum monoblock tibial component. The Knee 2014; 21: 199–203.
    1. Henricson A, Nilsson K G. Trabecular metal tibial knee component still stable at 10 years: an RSA study on 33 patients less than 60 years of age. Acta Orthop 2016; 87: 504–10.
    1. Jacobs W C H, Clement D, Wymenga A. Retention versus removal of the posterior cruciate ligament in total knee replacement. A systematic literature review within the Cochrane framework. Acta Orthop 2005; 76: 757–68.
    1. Jiang C, Liu Z, Wang Y, Bian Y, Feng B, Weng X. Posterior cruciate ligament retention versus posterior stabilization for total knee arthroplasty: a meta-analysis. PLoS ONE 2016; 11(1): e0147865.
    1. Kamath A F, Lee G-C, Sheth N P, Nelson C L, Garino J P, Israelite C L. Prospective results of tantalum monoblock tibia in total knee arthroplasty. J Arthroplasty 2011; 26(8): 1390–4.
    1. Levine B R, Sporer S, Poggie R A, Della Valle C J, Jacobs J J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006; 7: 4671–81.
    1. Li N, Tan Y, Deng Y, Chen L. Posterior cruciate-retaining versus posterior stabilized total knee arthroplasty: a meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc 2014; 22: 556–64.
    1. Minoda Y, Kobayashi A, Ikebuchi M, Iwaki H, Inori F, Nakamura H. Porous tantalum tibial component prevents periprosthetic loss of bone mineral density after total knee arthroplasty for five years: a matched cohort study. J Arthroplasty 2013; 28: 1760–4.
    1. Molt M, Ryd L, Toksvig-Larsen S. A randomized RSA study concentrating especially on continuous migration. Acta Orthop 2016; 87: 262–7.
    1. Nilsson K G, Kärrhom J, Ekelund L, Magnusson P. Evaluation of micromotion in cemented vs. uncemented knee arthroplasty in osteoarthritis and rheumatoid arthritis: randomized study using roentgen stereophotogrammetric analysis. J Arthroplasty 1991; 6: 265–78.
    1. Nilsson K G, Henricson A, Norgren B, Dalén T. Uncemented HA-coated implant is the optimum fixation for TKA in the young patient. Clin Orthop Rel Res 2006; 448: 129–38.
    1. Parratte S, Ollivier M, Opsomer G, Lunebourg A, Argenson J N, Thienpont E. Is knee function better with contemporary modular bicompartmental arthroplasty compared to total knee arthroplasty? Short-term outcomes of a prospective matched study including 68 cases. Orthop Traum Surg Res 2015; 101: 547–52.
    1. Pijls B G, Valstar E R, Kaptein B L, Fiocco M, Nelissen R G H H. The beneficial effect of hydroxyapatite lasts: a randomized radiostereometric trial comparing hydroxyapatite-coated, uncoated, and cemented tibial components for up to 16 years. Acta Orthop 2012a; 83: 135–41.
    1. Pijls B G, Valstar E R, Nouta K A, Plevier J W, Fiocco M, Middeldorp S, Nelissen R G H H. Early migration of tibial components is associated with late revision; a systemic review and meta-analysis of 21 000 knee arthroplasties. Acta Orthop 2012b; 83: 614–24.
    1. Pijls B G, Plevier J W M, Nelissen R G H H. RSA migration of total knee replacements: a systematic review and meta-analysis. Acta Orthop 2018; 89: 320–8.
    1. Putman S, Argenson J N, Bonnevialle P, Ehlinger M, Vie P, Leclercq S, Bizot P, Lustig S, Parratte S, Ramdane N, Comar N. Ten-year survival and complications of total knee arthroplasty for osteoarthritis secondary to trauma or surgery: a French multicenter study of 263 patients. Orthop Trauma Surg Res 2018; 104: 161–4.
    1. Rahbek O, Kold S, Zippor B, Overgaard S, Soballe K. Particle migration and gap healing around trabecular metal implants. Int Orthop 2005; 29: 368–74.
    1. Ranstam J, Ryd L, Önsten I. Accurate accuracy measurement: review of basic principles. Acta Orthop Scand 2000; 71: 106–8.
    1. Ritter M A, Davis K E, Farris A, Keating E M, Faris P M. The surgeon’s role in relative success of PCL-retaining and PCL-substituting total knee arthroplasty. HSS J 2014; 10: 107–15.
    1. Ryd L. Micromotion in knee arthroplasty: a roentgen stereophotogrammetric analysis of tibial component fixation. Act Orthop Scand 1986; (Suppl. 220): 1–80.
    1. Ryd L, Albrektsson B E, Carlsson L, Dansgard F, Herberts P, Lindstrand A, Regner L, Toksvig-Larsen S. Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg Br 1995; 77: 377–83.
    1. Sagomonyants K B, Hakim-Zargar M, Jhaveri A, Aronow A S, Gronowicz G. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res 2011; 29: 609–16.
    1. Sambaziotis C, Lovy A J, Koller K E, Bloebaum R D, Hirsh D M, Kim S J. Histologic retrieval analysis of a porous tantalum metal implant in an infected primary total knee arthroplasty. J Arthroplasty 2012; 27: 1413e5–1413e9.
    1. Schildhauer T A, Ribie B, Muhr G, Köller M. Bacterial adherence to tantalum versus commonly used orthopedic implant materials. J Orthop Trauma 2006; 20: 476–84.
    1. Scott C E H, Davidson E, MacDonald D J, White T O, Keating J F. Total knee arthroplasty following tibial plateau fracture: a matched cohort study. Bone Joint J 2015; 97-B: 532–8.
    1. van Hamersveld K T, Marang-van de Mheen P J, Tsonaka R, Valstar E R, Toksvig-Larsen S. Fixation and clinical outcome of uncemented peri-apatite-coated versus cemented total knee arthroplasty: five-year follow-up of a randomized controlled trial using radiostereometric analysis (RSA). Bone Joint J 2017; 99-B: 1467–76.
    1. van Hamersveld K T, Marang-van de Mhen P J, Nelissen R G H H, Toksvig-Larsen S. Peri-apatite coating decreases uncemented tibial component migration: long-term RSA results of a randomized controlled trial and limitations of short-term results. Acta Orthop 2018; 89: 425–30.
    1. Vertullo C J, Lewis P L, Lorimer M, Graves S E. The effect of long-term survivorship of surgeon preference for posterior-stabilized or minimally stabilized total knee replacement. J Bone Joint Surg Am 2017; 99: 1129–39.
    1. Watters T S, Zhen Y, Martin J R, Levy D L, Jennings J M, Dennis D A. Total knee arthroplasty after anterior cruciate ligament reconstruction: not just a routine primary arthroplasty. J Bone Joint Surg Am 2017; 99: 185–9.
    1. Wilson D A J, Richardson G, Hennigar A W, Dunbar M J. Continued stabilization of trabecular metal tibial monoblock total knee arthroplasty components at 5 years: measured with radiostereometric analysis. Acta Orthop 2012; 83: 36–40.
    1. Zandee van Rilland E, Varcadipane J, Geling O, Murai Kuba M, Nakasone C. A minimum 2-year follow-up using modular trabecular metal tibial components in total knee arthroplasty. Reconstructive Rev 2015; 5(3): 23–8.
    1. Zardiackas L D, Parsell D E, Dillon L D, Mitchell D W, Nunnery L A, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 2001; 58: 180–7.
    1. Zhang Y, Ahn P B, Fitzpatrick D C, Heiner A D, Poggie R A, Brown T D.. Interfacial frictional behaviour: cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J Musculoskel Res 1999; 3:245–251.

Source: PubMed

3
Předplatit