A group B Streptococcus alpha-like protein subunit vaccine induces functionally active antibodies in humans targeting homotypic and heterotypic strains

Andrzej Pawlowski, Jonas Lannergård, Majela Gonzalez-Miro, Duojia Cao, Sara Larsson, Jenny J Persson, Geoff Kitson, Michael Darsley, Ane Lilleøre Rom, Morten Hedegaard, Per B Fischer, Bengt Johansson-Lindbom, Andrzej Pawlowski, Jonas Lannergård, Majela Gonzalez-Miro, Duojia Cao, Sara Larsson, Jenny J Persson, Geoff Kitson, Michael Darsley, Ane Lilleøre Rom, Morten Hedegaard, Per B Fischer, Bengt Johansson-Lindbom

Abstract

Maternal vaccination is a promising strategy for preventing neonatal disease caused by group B Streptococcus. The safety and immunogenicity of the prototype vaccine GBS-NN, a fusion protein consisting of the N-terminal domains of the alpha-like proteins (Alp) αC and Rib, were recently evaluated favorably in healthy adult women in a phase 1 trial. Here we demonstrate robust immunoglobulin G (IgG) and immunoglobulin A (IgA) responses against αC and Rib, as well as against the heterotypic Alp family members Alp1-Alp3. IgA and heterotypic IgG responses are more variable between subjects and correlate with pre-existing immunity. Vaccine-induced IgG mediates opsonophagocytic killing and prevents bacterial invasion of epithelial cells. Like the vaccine-induced response, naturally acquired IgG against the vaccine domains is dominated by IgG1. Consistent with the high IgG1 cross-placental transfer rate, naturally acquired IgG against both domains reaches higher concentrations in neonatal than maternal blood, as assessed in a separate group of non-vaccinated pregnant women and their babies.

Trial registration: ClinicalTrials.gov NCT02459262.

Keywords: antibodies; group B Streptococcus; maternal immunization; neonatal disease; opsonophagocytosis; vaccines.

Conflict of interest statement

B.J.-L. reports personal fees and grants from MinervaX ApS during the conduct of the study. P.B.F. reports grants and personal fees from MinervaX ApS during the conduct of the study and personal fees from MinervaX ApS outside of the submitted work. In addition, P.B.F. has a pending patent application relating to use of GBS-NN as a vaccine candidate. M.D. reports personal fees from MinervaX ApS during the conduct of the study. G.K. reports personal fees from MinervaX ApS during the conduct of the study and personal fees from various clients outside of the submitted work.

© 2022 The Author(s).

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Vaccination with GBS-NN elicits persistent IgG responses against homotypic and heterotypic Alp-Ns (A) Serum concentration of IgG against the indicated Alp-N before vaccination and on the indicated days after the first dose. Gray symbols represent results obtained 4 weeks after primary immunization and prior to the second dose. Results show individual subject concentrations and GMC (n = 45). (B) Pearson correlations between pre- and post-vaccination (day 57) IgG against indicated Alp-N (n = 45). (C) Serum concentration of IgG1 and IgG2 against the indicated Alp-N before vaccination and 4 weeks after the second dose (day 57). Results show GMCs with 95% CI (n = 20). See also Table S1.
Figure 2
Figure 2
Primary immunization with GBS-NN elicits persistent IgA responses against homotypic and heterotypic Alp-Ns (A) Serum concentration of IgA against the indicated Alp-N before vaccination and on the indicated days after the first dose. Gray symbols represent results obtained 4 weeks after primary immunization and prior to the second dose. Results show individual subject concentrations and GMC (n = 45). (B) Pearson correlations between pre- and post-vaccination (day 57) IgA against the indicated Alp-N (n = 45). See also Table S1.
Figure 3
Figure 3
Vaccine-induced Alp-N-specific IgG correlates with an increase in IgG binding to intact bacteria and detects Rib protein on the surface of clinical isolates with different CPS types (A and B) Binding of human serum IgG to strain A909 (A) and BM110 (B) was analyzed by flow cytometry before and after vaccination, and the association between the vaccine-induced increase in GMFI (ΔGMFI) and vaccine-induced increase in corresponding IgG concentration was assessed by Pearson correlation. (C) Flow cytometry analysis of Rib protein on the surface of 31 clinical EOD and LOD isolates possessing the Rib gene and indicated CPS types, using a fixed dilution (1:3,200) of a rabbit GBS antiserum. The model strain BM110 was included as reference. Results show geometric mean fluorescence intensities (GMFIs). The asterisk for strain 1,021 indicates bimodal expression (one negative and one positive GBS population; it is not possible to report GMFI).
Figure 4
Figure 4
GBS-NN elicits an Ab response that mediates OPk of homotypic and heterotypic GBS strains Pre- and post-vaccination sera were assessed for the ability to mediate OPk of the indicated GBS strains. OPkA titer is defined as the reciprocal serum dilution required to mediate 50% bacterial killing relative to killing in the absence of human serum. (A) Total OPk with pre- and post-vaccination sera. Results show titers for individual sera and GMTs. (B) Percentage of subjects reaching the indicated OPkA titer thresholds before and after vaccination. (C and D) Representative OPk killing curves, showing colony-forming units (CFUs) for the A909 (C) and BM110 (D) strains after incubation with pre-vaccination (brown curves) or post-vaccination (blue curves) serum samples in the absence (filled circles) or presence (open circles) of 50 µg/ml soluble GBS-NN (adsorptions [Ads]). The top graphs show results for pre- versus post-vaccination sera in the absence of inhibitor. The center graphs show post-vaccination sera in the absence or presence of inhibitor. The bottom graphs show pre-vaccination sera in the absence or presence of inhibitor. (E–H) Pearson correlations between ΔOPkA titer and concentrations of IgG (left), IgA (center), and IgM (right) specific for the strain homologous Alp-N. See also Table S2.
Figure 5
Figure 5
Post-vaccination sera prevent GBS invasion of cervical epithelial cells (A) Post-vaccination sera from four subjects with intermediate to high levels of IgG and/or IgA against αC-N and Rib-N were compared with the paired pre-vaccination sera for the ability to prevent A909 (left) and BM110 (right) invasion of human cervical epithelial ME180 cells. All sera were diluted 1/100. Pooled results from three independent experiments. Error bars indicate SD. For information on αC-N- and Rib-N-specific Ab concentrations in selected sera, see Table S3. (B) Post-vaccination sera were diluted to a target concentration of 100 ng/mL IgG plus IgA against αC-N (left) or Rib-N (right) and compared with corresponding pre-vaccination sera for the ability to prevent invasion of ME180 cells (n = 28). Each pre-vaccination serum was diluted by the same dilution factor as the paired post-vaccination serum. The geometric mean serum dilution factor for A909 experiments was 116 (range, 14–898). The geometric mean serum dilution factor for BM110 experiments was 38 (range, 11–204). All results are normalized to invasion in the absence of human serum.
Figure 6
Figure 6
Naturally acquired IgG against αC-N and Rib-N accumulates in neonatal blood and persists for at least 2 months (A and B) Serum concentrations of IgG against αC-N (A) and Rib-N (B) in a cohort of paired mothers and neonates. Maternal venous blood and cord blood were collected at partum (n = 152), as well as approximately 1 month (n = 105), and approximately two months (n = 61) after delivery, respectively (STAR Methods). Results shown are IgG GMC ±95% CI. Statistical analysis was performed by paired t test on logarithmically transformed concentration values. For each comparison, only paired values were included in the analysis (maternal partum versus cord blood, n = 152; partum/cord versus 1 month, n = 105; 1 month versus two months, n = 61).

References

    1. Kwatra G., Cunnington M.C., Merrall E., Adrian P.V., Ip M., Klugman K.P., Tam W.H., Madhi S.A. Prevalence of maternal colonisation with group B streptococcus: a systematic review and meta-analysis. Lancet Infect. Dis. 2016;16:1076–1084. doi: 10.1016/S1473-3099(16)30055-X.
    1. Russell N.J., Seale A.C., O'Driscoll M., O'Sullivan C., Bianchi-Jassir F., Gonzalez-Guarin J., Lawn J.E., Baker C.J., Bartlett L., Cutland C., et al. Maternal colonization with group b streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin. Infect. Dis. 2017;65:S100–S111. doi: 10.1093/cid/cix658.
    1. Seale A.C., Bianchi-Jassir F., Russell N.J., Kohli-Lynch M., Tann C.J., Hall J., Madrid L., Blencowe H., Cousens S., Baker C.J., et al. Estimates of the burden of group b streptococcal disease worldwide for pregnant women, stillbirths, and children. Clin. Infect. Dis. 2017;65:S200–S219. doi: 10.1093/cid/cix664.
    1. Seale A.C., Blencowe H., Bianchi-Jassir F., Embleton N., Bassat Q., Ordi J., Menéndez C., Cutland C., Briner C., Berkley J.A., et al. Stillbirth with group b streptococcus disease worldwide: systematic review and meta-analyses. Clin. Infect. Dis. 2017;65:S125–S132. doi: 10.1093/cid/cix585.
    1. Hall J., Adams N.H., Bartlett L., Seale A.C., Lamagni T., Bianchi-Jassir F., Lawn J.E., Baker C.J., Cutland C., Heath P.T., et al. Maternal disease with group b streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin. Infect. Dis. 2017;65:S112–S124. doi: 10.1093/cid/cix660.
    1. Bianchi-Jassir F., Seale A.C., Kohli-Lynch M., Lawn J.E., Baker C.J., Bartlett L., Cutland C., Gravett M.G., Heath P.T., Ip M., et al. Preterm birth associated with group B streptococcus maternal colonization worldwide: systematic review and meta-analyses. Clin. Infect. Dis. 2017;65:S133–S142. doi: 10.1093/cid/cix661.
    1. Verani J.R., McGee L., Schrag S.J., Division of Bacterial Diseases. Centers for Disease Control and Prevention (CDC) Prevention of perinatal group B streptococcal disease--revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59:1–36.
    1. Berardi A., Rossi C., Lugli L., Creti R., Bacchi Reggiani M.L., Lanari M., Memo L., Pedna M.F., Venturelli C., Perrone E., et al. Group B streptococcus late-onset disease: 2003-2010. Pediatrics. 2013;131:e361–e368. doi: 10.1542/peds.2012-1231.
    1. Seale A.C., Baker C.J., Berkley J.A., Madhi S.A., Ordi J., Saha S.K., Schrag S.J., Sobanjo-Ter Meulen A., Vekemans J. Vaccines for maternal immunization against Group B Streptococcus disease: WHO perspectives on case ascertainment and case definitions. Vaccine. 2019;37:4877–4885. doi: 10.1016/j.vaccine.2019.07.012.
    1. Fischer P., Pawlowski A., Cao D., Bell D., Kitson G., Darsley M., Johansson-Lindbom B. Safety and immunogenicity of a prototype recombinant alpha-like protein subunit vaccine (GBS-NN) against Group B Streptococcus in a randomised placebo-controlled double-blind phase 1 trial in healthy adult women. Vaccine. 2021;39:4489–4499. doi: 10.1016/j.vaccine.2021.06.046.
    1. Stålhammar-Carlemalm M., Waldemarsson J., Johnsson E., Areschoug T., Lindahl G. Nonimmunodominant regions are effective as building blocks in a streptococcal fusion protein vaccine. Cell Host Microbe. 2007;2:427–434. doi: 10.1016/j.chom.2007.10.003.
    1. Maeland J.A., Afset J.E., Lyng R.V., Radtke A. Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae. Clin. Vaccin. Immunol. 2015;22:153–159. doi: 10.1128/CVI.00643-14.
    1. McGee L., Chochua S., Li Z., Mathis S., Rivers J., Metcalf B., Ryan A., Alden N., Farley M.M., Harrison L.H., et al. Multistate, population-based distributions of candidate vaccine targets, clonal complexes, and resistance features of invasive group B streptococci within the United States, 2015–2017. Clin. Infect. Dis. 2021;72:1004–1013. doi: 10.1093/cid/ciaa151.
    1. Larsson C., Stålhammar-Carlemalm M., Lindahl G. Experimental vaccination against group B streptococcus, an encapsulated bacterium, with highly purified preparations of cell surface proteins Rib and alpha. Infect. Immun. 1996;64:3518–3523. doi: 10.1128/iai.64.9.3518-3523.1996.
    1. Larsson C., Stålhammar-Carlemalm M., Lindahl G. Protection against experimental infection with group B streptococcus by immunization with a bivalent protein vaccine. Vaccine. 1999;17:454–458. doi: 10.1016/s0264-410x(98)00218-7.
    1. Lachenauer C.S., Creti R., Michel J.L., Madoff L.C. Mosaicism in the alpha-like protein genes of group B streptococci. Proc. Natl. Acad. Sci. U S A. 2000;97:9630–9635. doi: 10.1073/pnas.97.17.9630.
    1. Rubens C.E., Raff H.V., Jackson J.C., Chi E.Y., Bielitzki J.T., Hillier S.L. Pathophysiology and histopathology of group B streptococcal sepsis in Macaca nemestrina primates induced after intraamniotic inoculation: evidence for bacterial cellular invasion. J. Infect. Dis. 1991;164:320–330. doi: 10.1093/infdis/164.2.320.
    1. Moyo S.R., Hägerstrand I., Nyström L., Tswana S.A., Blomberg J., Bergström S., Ljungh A. Stillbirths and intrauterine infection, histologic chorioamnionitis and microbiological findings. Int. J. Gynaecol. Obstet. 1996;54:115–123. doi: 10.1016/0020-7292(96)02705-1.
    1. Boggess K.A., Watts D.H., Hillier S.L., Krohn M.A., Benedetti T.J., Eschenbach D.A. Bacteremia shortly after placental separation during cesarean delivery. Obstet. Gynecol. 1996;87:779–784. doi: 10.1016/0029-7844(96)00037-3.
    1. Winram S.B., Jonas M., Chi E., Rubens C.E. Characterization of group B streptococcal invasion of human chorion and amnion epithelial cells in vitro. Infect. Immun. 1998;66:4932–4941. doi: 10.1128/IAI.66.10.4932-4941.1998.
    1. Nizet V., Kim K.S., Stins M., Jonas M., Chi E.Y., Nguyen D., Rubens C.E. Invasion of brain microvascular endothelial cells by group B streptococci. Infect. Immun. 1997;65:5074–5081. doi: 10.1128/iai.65.12.5074-5081.1997.
    1. Rubens C.E., Smith S., Hulse M., Chi E.Y., van Belle G. Respiratory epithelial cell invasion by group B streptococci. Infect. Immun. 1992;60:5157–5163. doi: 10.1128/iai.60.12.5157-5163.1992.
    1. Valentin-Weigand P., Benkel P., Rohde M., Chhatwal G.S. Entry and intracellular survival of group B streptococci in J774 macrophages. Infect. Immun. 1996;64:2467–2473. doi: 10.1128/iai.64.7.2467-2473.1996.
    1. Valentin-Weigand P., Jungnitz H., Zock A., Rohde M., Chhatwal G.S. Characterization of group B streptococcal invasion in HEp-2 epithelial cells. FEMS Microbiol. Lett. 1997;147:69–74. doi: 10.1111/j.1574-6968.1997.tb10222.x.
    1. Bolduc G.R., Baron M.J., Gravekamp C., Lachenauer C.S., Madoff L.C. The alpha C protein mediates internalization of group B Streptococcus within human cervical epithelial cells. Cell Microbiol. 2002;4:751–758. doi: 10.1046/j.1462-5822.2002.00227.x.
    1. Bolduc G.R., Madoff L.C. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells. Microbiology (Reading) 2007;153:4039–4049. doi: 10.1099/mic.0.2007/009134-0.
    1. Stålhammar-Carlemalm M., Areschoug T., Larsson C., Lindahl G. The R28 protein of Streptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Mol. Microbiol. 1999;33:208–219. doi: 10.1046/j.1365-2958.1999.01470.x.
    1. Soriani M., Santi I., Taddei A., Rappuoli R., Grandi G., Telford J.L. Group B Streptococcus crosses human epithelial cells by a paracellular route. J. Infect. Dis. 2006;193:241–250. doi: 10.1086/498982.
    1. Baron M.J., Bolduc G.R., Goldberg M.B., Aupérin T.C., Madoff L.C. Alpha C protein of group B Streptococcus binds host cell surface glycosaminoglycan and enters cells by an actin-dependent mechanism. J. Biol. Chem. 2004;279:24714–24723. doi: 10.1074/jbc.M402164200.
    1. Le Doare K., Kampmann B., Vekemans J., Heath P.T., Goldblatt D., Nahm M.H., Baker C., Edwards M.S., Kwatra G., Andrews N., et al. Serocorrelates of protection against infant group B streptococcus disease. Lancet Infect. Dis. 2019;19:e162–e171. doi: 10.1016/S1473-3099(18)30659-5.
    1. Larsson C., Lindroth M., Nordin P., Stålhammar-Carlemalm M., Lindahl G., Krantz I. Association between low concentrations of antibodies to protein alpha and Rib and invasive neonatal group B streptococcal infection. Arch. Dis. Child Fetal Neonatal. Ed. 2006;91:F403–F408. doi: 10.1136/adc.2005.090472.
    1. Song J.Y., Moseley M.A., Burton R.L., Nahm M.H. Pneumococcal vaccine and opsonic pneumococcal antibody. J. Infect. Chemother. 2013;19:412–425. doi: 10.1007/s10156-013-0601-1.
    1. Malek A., Sager R., Schneider H. Maternal-fetal transport of immunoglobulin G and its subclasses during the third trimester of human pregnancy. Am. J. Reprod. Immunol. 1994;32:8–14. doi: 10.1111/j.1600-0897.1994.tb00873.x.
    1. Dangor Z., Lala S.G., Cutland C.L., Koen A., Jose L., Nakwa F., Ramdin T., Fredericks J., Wadula J., Madhi S.A. Burden of invasive group B Streptococcus disease and early neurological sequelae in South African infants. PLoS One. 2015;10:e0123014. doi: 10.1371/journal.pone.0123014.
    1. Nahm M.H., Burton R.L. Protocol for opsonophagocytic killing assay for antibodies against Group B Streptococcus (UAB GBS OPA) 2016.
    1. Kurosaki T., Kometani K., Ise W. Memory B cells. Nat. Rev. Immunol. 2015;15:149–159. doi: 10.1038/nri3802.
    1. Francis T. On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 1960;104:572–578.
    1. Rothman A.L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 2011;11:532–543. doi: 10.1038/nri3014.
    1. Plainvert C., Doloy A., Loubinoux J., Lepoutre A., Collobert G., Touak G., Trieu-Cuot P., Bouvet A., Poyart C., network C.-S. Invasive group A streptococcal infections in adults, France (2006-2010) Clin. Microbiol. Infect. 2012;18:702–710. doi: 10.1111/j.1469-0691.2011.03624.x.
    1. Gherardi G., Vitali L.A., Creti R. Prevalent emm types among invasive GAS in Europe and North America since Year 2000. Front. Public Health. 2018;6:59. doi: 10.3389/fpubh.2018.00059.
    1. Colman G., Tanna A., Efstratiou A., Gaworzewska E.T. The serotypes of Streptococcus pyogenes present in Britain during 1980-1990 and their association with disease. J. Med. Microbiol. 1993;39:165–178. doi: 10.1099/00222615-39-3-165.
    1. Gherardi G., Imperi M., Palmieri C., Magi G., Facinelli B., Baldassarri L., Pataracchia M., Creti R. Genetic diversity and virulence properties of Streptococcus dysgalactiae subsp. equisimilis from different sources. J. Med. Microbiol. 2014;63:90–98. doi: 10.1099/jmm.0.062109-0.
    1. Brandt C.M., Spellerberg B. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin. Infect. Dis. 2009;49:766–772. doi: 10.1086/605085.
    1. Lycke N.Y., Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol. 2017;10:1361–1374. doi: 10.1038/mi.2017.62.
    1. Converso T.R., Assoni L., André G.O., Darrieux M., Leite L.C.C. The long search for a serotype independent pneumococcal vaccine. Expert Rev. Vaccin. 2020;19:57–70. doi: 10.1080/14760584.2020.1711055.
    1. Ginsburg A.S., Nahm M.H., Khambaty F.M., Alderson M.R. Issues and challenges in the development of pneumococcal protein vaccines. Expert Rev. Vaccin. 2012;11:279–285. doi: 10.1586/erv.12.5.
    1. Daniels C.C., Kim K.H., Burton R.L., Mirza S., Walker M., King J., Hale Y., Coan P., Rhee D.K., Nahm M.H., Briles D.E. Modified opsonization, phagocytosis, and killing assays to measure potentially protective antibodies against pneumococcal surface protein A. Clin. Vaccin. Immunol. 2013;20:1549–1558. doi: 10.1128/CVI.00371-13.
    1. Calvert A., Jones C.E. Placental transfer of antibody and its relationship to vaccination in pregnancy. Curr. Opin. Infect. Dis. 2017;30:268–273. doi: 10.1097/QCO.0000000000000372.
    1. Madhi S.A., Koen A., Cutland C.L., Jose L., Govender N., Wittke F., Olugbosi M., Sobanjo-Ter Meulen A., Baker S., Dull P.M., et al. Antibody kinetics and response to routine vaccinations in infants born to women who received an investigational trivalent group B Streptococcus polysaccharide CRM197-conjugate vaccine during pregnancy. Clin. Infect. Dis. 2017;65:1897–1904. doi: 10.1093/cid/cix666.
    1. Aguree S., Gernand A.D. Plasma volume expansion across healthy pregnancy: a systematic review and meta-analysis of longitudinal studies. BMC Pregnancy Childbirth. 2019;19:508. doi: 10.1186/s12884-019-2619-6.
    1. Vilajeliu A., Ferrer L., Munrós J., Goncé A., López M., Costa J., Bayas J.M., Group P.W. Pertussis vaccination during pregnancy: antibody persistence in infants. Vaccine. 2016;34:3719–3722. doi: 10.1016/j.vaccine.2016.05.051.
    1. Vornhagen J., Armistead B., Santana-Ufret V., Gendrin C., Merillat S., Coleman M., Quach P., Boldenow E., Alishetti V., Leonhard-Melief C., et al. Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection. J. Clin. Invest. 2018;128:1985–1999. doi: 10.1172/JCI97043.
    1. Weckel A., Ahamada D., Bellais S., Méhats C., Plainvert C., Longo M., Poyart C., Fouet A. The N-terminal domain of the R28 protein promotes. J. Biol. Chem. 2018;293:16006–16018. doi: 10.1074/jbc.RA118.004134.
    1. Areschoug T., Carlsson F., Stålhammar-Carlemalm M., Lindahl G. Host-pathogen interactions in Streptococcus pyogenes infections, with special reference to puerperal fever and a comment on vaccine development. Vaccine. 2004;22:S9–S14. doi: 10.1016/j.vaccine.2004.08.010.
    1. Creti R., Fabretti F., Orefici G., von Hunolstein C. Multiplex PCR assay for direct identification of group B streptococcal alpha-protein-like protein genes. J. Clin. Microbiol. 2004;42:1326–1329. doi: 10.1128/JCM.42.3.1326-1329.2004.

Source: PubMed

3
Předplatit