Intense and unpredictable perturbations during gait training improve dynamic balance abilities in chronic hemiparetic individuals: a randomized controlled pilot trial

Vahid Esmaeili, Andréanne Juneau, Joseph-Omer Dyer, Anouk Lamontagne, Dahlia Kairy, Laurent Bouyer, Cyril Duclos, Vahid Esmaeili, Andréanne Juneau, Joseph-Omer Dyer, Anouk Lamontagne, Dahlia Kairy, Laurent Bouyer, Cyril Duclos

Abstract

Background: Previous studies have assessed the effects of perturbation training on balance after stroke. However, the perturbations were either applied while standing or were small in amplitude during gait, which is not representative of the most common fall conditions. The perturbations were also combined with other challenges such as progressive increases in treadmill speed.

Objective: To determine the benefit of treadmill training with intense and unpredictable perturbations compared to treadmill walking-only training for dynamic balance and gait post-stroke.

Methods: Twenty-one individuals post-stroke with reduced dynamic balance abilities, with or without a history of fall and ability to walk on a treadmill without external support or a walking aid for at least 1 min were allocated to either an unpredictable gait perturbation (Perturb) group or a walking-only (NonPerturb) group through covariate adaptive randomization. Nine training sessions were conducted over 3 weeks. NonPerturb participants only walked on the treadmill but were offered perturbation training after the control intervention. Pre- and post-training evaluations included balance and gait abilities, maximal knee strength, balance confidence and community integration. Six-week phone follow-ups were conducted for balance confidence and community integration. Satisfaction with perturbation training was also assessed.

Results: With no baseline differences between groups (p > 0.075), perturbation training yielded large improvements in most variables in the Perturb (p < 0.05, Effect Size: ES > .46) group (n = 10) and the NonPerturb (p ≤ .089, ES > .45) group (n = 7 post-crossing), except for maximal strength (p > .23) in the NonPerturb group. Walking-only training in the NonPerturb group (n = 8, pre-crossing) mostly had no effect (p > .292, ES < .26), except on balance confidence (p = .063, ES = .46). The effects of the gait training were still present on balance confidence and community integration at follow-up. Satisfaction with the training program was high.

Conclusion: Intense and unpredictable gait perturbations have the potential to be an efficient component of training to improve balance abilities and community integration in individuals with chronic stroke. Retrospective registration: ClinicalTrials.gov. March 18th, 2020. Identifier: NCT04314830.

Keywords: Balance; Community mobility; Gait; Perturbation training; Strength; Stroke.

Conflict of interest statement

The authors declared no competing interests.

Figures

Fig. 1
Fig. 1
Description of the content of one training session
Fig. 2
Fig. 2
Flow diagram of the study; text boxes with a light blue background highlight the perturbation training periods
Fig. 3
Fig. 3
Mean and standard deviations (error bars) in the number of repeated (blue) and unpredictable (orange) perturbations applied among the 17 participants (Perturb group: n = 10, NonPerturb group after crossover: n = 7) who received perturbation training
Fig. 4
Fig. 4
Effects of perturbation (Perturb training (grey) and NonPerturb 2nd training (solid black)) and walking-only training (NonPerturb 1st training (black outline)) on dynamic balance (Mini BESTest, top left), walking speed (10 MWT, top right), maximal knee extension strength (dynamometry, middle left), balance confidence (ABC, middle right) and level of community reintegration (RNLI, bottom) pre-, and immediate post-training, as well at the 6-weeks follow-up for balance confidence and community reintegration. NParetic: Nonparetic side. * indicates statistically significant change compared to the previous assessment time
Fig. 5
Fig. 5
Responses to Short Form Questionnaire-Modified for Perturbations (SFQ-Mp) for participants who attended perturbation training (Perturb: n = 10, NonPerturb: n = 7), expressed an a percentage (%) of total responses

References

    1. Batchelor FA, Mackintosh SF, Said CM, Hill KD. Falls after stroke. Int J Stroke. 2012;7(6):482–490.
    1. Garland SJ, Gray VL, Knorr S. Muscle activation patterns and postural control following stroke. Mot Control. 2009;13(4):387–411.
    1. Pollock C, Eng J, Garland S. Clinical measurement of walking balance in people post stroke: a systematic review. Clin Rehabil. 2011;25(8):693–708.
    1. Pollock AS, Durward BR, Rowe PJ, Paul JP. What is balance? Clin Rehabil. 2000;14(4):402–406.
    1. Leroux A, Pinet H, Nadeau S. Task-oriented intervention in chronic stroke: changes in clinical and laboratory measures of balance and mobility. Am J Phys Med Rehabil. 2006;85(10):820–830.
    1. von Schroeder HP, Coutts RD, Lyden PD, Billings E, Jr, Nickel VL. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32(1):25–31.
    1. Said CM, Goldie PA, Patla AE, Sparrow WA. Effect of stroke on step characteristics of obstacle crossing. Arch Phys Med Rehabil. 2001;82(12):1712–1719.
    1. Sawacha Z, Carraro E, Contessa P, Guiotto A, Masiero S, Cobelli C. Relationship between clinical and instrumental balance assessments in chronic post-stroke hemiparesis subjects. J Neuroeng Rehabil. 2013;10:95.
    1. Mansfield A, Aqui A, Centen A, Danells CJ, DePaul VG, Knorr S, et al. Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial. BMC Neurol. 2015;15:87.
    1. Weerdesteyn V, de Niet M, van Duijnhoven HJ, Geurts AC. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45(8):1195–1213.
    1. Lubetzky-Vilnai A, Kartin D. The effect of balance training on balance performance in individuals poststroke: a systematic review. J Neurol Phys Ther. 2010;34(3):127–137.
    1. Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011;41(5):377–400.
    1. Vearrier LA, Langan J, Shumway-Cook A, Woollacott M. An intensive massed practice approach to retraining balance post-stroke. Gait Posture. 2005;22(2):154–163.
    1. Marigold DS, Eng JJ, Dawson AS, Inglis JT, Harris JE, Gylfadóttir S. Exercise leads to faster postural reflexes, improved balance and mobility, and fewer falls in older persons with chronic stroke. J Am Geriatr Soc. 2005;53(3):416–423.
    1. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987.
    1. Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Phys Ther. 1997;77(5):488–507.
    1. Gerards MHG, McCrum C, Mansfield A, Meijer K. Perturbation-based balance training for falls reduction among older adults: current evidence and implications for clinical practice. Geriatr Gerontol Int. 2017;17(12):2294–2303.
    1. Pai YC, Bhatt TS. Repeated-slip training: an emerging paradigm for prevention of slip-related falls among older adults. Phys Ther. 2007;87(11):1478–1491.
    1. Mansfield A, Aqui A, Danells CJ, Knorr S, Centen A, DePaul VG, et al. Does perturbation-based balance training prevent falls among individuals with chronic stroke? A randomised controlled trial. Br Med J Open. 2018;8(8):e021510.
    1. Punt M, Bruijn SM, van de Port IG, de Rooij IJM, Wittink H, van Dieen JH. Does a perturbation-based gait intervention enhance gait stability in fall-prone stroke survivors? A pilot study. J Appl Biomech. 2019;35(3):173–181.
    1. Handelzalts S, Kenner-Furman M, Gray G, Soroker N, Shani G, Melzer I. Effects of perturbation-based balance training in subacute persons with stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2019;33(3):213–224.
    1. Kumar C, Pathan NM. Effectiveness of manual perturbation exercises in improving balance, function and mobility in stroke patients: a randomized controlled trial. J Nov Physiother. 2016;6:284–292.
    1. Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8:1–184.
    1. van Duijnhoven HJ, Heeren A, Peters MA, Veerbeek JM, Kwakkel G, Geurts AC, et al. Effects of exercise therapy on balance capacity in chronic stroke: systematic review and meta-analysis. Stroke. 2016;47(10):2603–10.
    1. Tally Z, Boetefuer L, Kauk C, Perez G, Schrand L, Hoder J. The efficacy of treadmill training on balance dysfunction in individuals with chronic stroke: a systematic review. Top Stroke Rehabil. 2017;24(7):539–546.
    1. O’Hoski S, Winship B, Herridge L, Agha T, Brooks D, Beauchamp MK, et al. Increasing the clinical utility of the BESTest, mini-BESTest, and BriefBESTest: normative values in Canadian adults who are healthy and aged 50 years and over. Phys Ther. 2014;94(3):334–342.
    1. Lezak MD. Neuropsychological assessment. 3. New York: Oxford University Press; 1995.
    1. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198.
    1. Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24(1):58–63.
    1. Levin MF, Hui-Chan C. Are H and stretch reflexes in hemiparesis reproducible and correlated with spasticity? J Neurol. 1993;240(2):63–71.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–732.
    1. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. Br Med J. 2014;348:g1687.
    1. Ilmane N, Croteau S, Duclos C. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces. J Biomech. 2015;48(3):441–448.
    1. Tsang CS, Liao LR, Chung RC, Pang MY. Psychometric properties of the mini-balance evaluation systems test (mini-BESTest) in community-dwelling individuals with chronic stroke. Phys Ther. 2013;93(8):1102–1115.
    1. Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. Comparison of reliability, validity, and responsiveness of the mini-BESTest and berg balance scale in patients with balance disorders. Phys Ther. 2013;93(2):158–167.
    1. Bowden MG, Balasubramanian CK, Behrman AL, Kautz SA. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil Neural Repair. 2008;22(6):672–675.
    1. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743–749.
    1. Botner EM, Miller WC, Eng JJ. Measurement properties of the activities-specific balance confidence scale among individuals with stroke. Disabil Rehabil. 2005;27(4):156–163.
    1. Mayo NE, Anderson S, Barclay R, Cameron JI, Desrosiers J, Eng JJ, et al. Getting on with the rest of your life following stroke: a randomized trial of a complex intervention aimed at enhancing life participation post stroke. Clin Rehabil. 2015;29(12):1198–1211.
    1. Wood-Dauphinee SL, Opzoomer MA, Williams JI, Marchand B, Spitzer WO. Assessment of global function: the reintegration to Normal living index. Arch Phys Med Rehabil. 1988;69(8):583–590.
    1. Archambault PS, Blackburn E, Reid D, Routhier F, Miller WC. Development and user validation of driving tasks for a power wheelchair simulator. Disabil Rehabil. 2017;39(15):1549–1556.
    1. Suresh KP. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011;4(1):8–11.
    1. Rosenthal R. Parametric measures of effect size. Handb Res Synth. 1994;621:231–244.
    1. Rosenberger WF, Sverdlov O, Hu F. Adaptive randomization for clinical trials. J Biopharm Stat. 2012;22(4):719–736.
    1. Schinkel-Ivy A, Huntley AH, Aqui A, Mansfield A. Does perturbation-based balance training improve control of reactive stepping in individuals with chronic stroke? J Stroke Cerebrovasc Dis. 2019;28(4):935–943.
    1. van Duijnhoven HJR, Roelofs JMB, den Boer JJ, Lem FC, Hofman R, van Bon GEA, et al. Perturbation-based balance training to improve step quality in the chronic phase after stroke: a proof-of-concept study. Front Neurol. 2018;9:980.
    1. Büla CJ, Monod S, Hoskovec C, Rochat S. Interventions aiming at balance confidence improvement in older adults: an updated review. Gerontology. 2011;57(3):276–286.
    1. Morris SL, Dodd KJ, Morris ME. Outcomes of progressive resistance strength training following stroke: a systematic review. Clin Rehabil. 2004;18(1):27–39.
    1. McCrum C, Gerards MHG, Karamanidis K, Zijlstra W, Meijer K. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. Eur Rev Aging Phys Act. 2017;14:3.
    1. Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2015;95(5):700–709.
    1. Viteckova S, Kutilek P, Kotolova V, Krupicka R, Szabo Z, Kauler J, et al., editors. Split-Belt Treadmill to Study Reactive Responses to Unexpected Gait Perturbation2019. Singapore: Springer Singapore.

Source: PubMed

3
Předplatit