Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report

Ahmad Jabir Rahyussalim, Ifran Saleh, Tri Kurniawati, Andi Praja Wira Yudha Lutfi, Ahmad Jabir Rahyussalim, Ifran Saleh, Tri Kurniawati, Andi Praja Wira Yudha Lutfi

Abstract

Background: Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney.

Case presentation: We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating.

Conclusions: Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

Keywords: Chronic kidney failure; Spinal cord entrapment; hUC-MSC.

Conflict of interest statement

Ethics approval and consent to participate

All procedures used in this study were approved by the Ethics Committee of Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital. Reference number: 679/UN2.F1/ETIK/VIII/2016.

Consent for publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Plain radiograph of thoracic region, anteroposterior and lateral views. a Anteroposterior view shows spinal deformity and mass deposition process around the thoracic vertebrae (red arrows). b Lateral view shows degenerative process with mass deposition at some level of the spinal canal (yellow arrows)
Fig. 2
Fig. 2
Sagittal and axial views of thoracic magnetic resonance imaging with T1-weighted and T2-weighted images. a Sagittal section of T2-weighted magnetic resonance imaging shows many compressions of spinal cord at levels T3, T5, T8, and T9 (red arrows). b Magnetic resonance imaging-myelography that shows spinal cord compression at levels T5 and T9 (yellow arrows). c Axial view of T5 vertebrae level shows the hypointense mass at left and right posterior parts (blue arrows). The mass compresses the canal
Fig. 3
Fig. 3
Potential neuroprotective and neurorestorative effects of mesenchymal stem cells. MSCs mesenchymal stem cells
Fig. 4
Fig. 4
Stem cell therapies can result in neuroprotection, neuroregeneration, and/or enhance neuronal plasticity following spinal cord intrusion. a Neuroprotection refers to preservation and protection of neural tissue from secondary pathophysiology, including hemorrhage, ischemia as well as occlusion, infiltration of immune cells, demyelination, and apoptosis. Stem cells can be neuroprotective by reducing blood–spinal cord barrier disruption, improving vascular function, creating an anti-inflammatory environment, limiting demyelination, and decreasing apoptosis. b Neuroregenerative strategies aim to replace the damaged cells in the spinal cord by modifying the intrusion environment to either stimulate endogenous regeneration or exogenous cell transplantation. Stem cells can be neuroregenerative by providing an extracellular matrix scaffold within the cystic cavity, trophic support, remyelinating damaged axons, and cell replacement. c Damaged neurons, inhibitory chondroitin sulfate proteoglycans, and inhibitory components of central nervous system myelin restrict neuronal plasticity post-spinal cord injury. By promoting collateral sprouting, via trophic support, cell therapy can enhance the reorganization of neural pathways [11]. BSCB blood–spinal cord barrier, CNS central nervous system, CSPGs chondroitin sulfate proteoglycans, ECM extracellular matrix
Fig. 5
Fig. 5
Properties of mesenchymal stem cell in kidney diseases. Mesenchymal stem cell, soluble factors, or microvesicles can be delivered to the kidney via the intraperitoneal, intra-arterial, intravenous, intraparenchymal, or intraosseous route. They exert a series of renoprotective and regenerative actions on the injured tissue through various paracrine mechanisms: antifibrotic and antiapoptotic, proangiogenic, proliferative and differentiative, antioxidative stress, and immunosuppression and immunomodulation of the immune system [6]. MSC mesenchymal stem cell, ROS reactive oxygen species, Arrow enhancement, T-bar reduction

References

    1. Park D, Lee J, Borlongan CV, Sanberg PR. Transplantation of Umbilical Cord Blood Stem Cells for Treating Spinal Cord Injury. Stem Cell Rev. 2011;7(1):181–94. doi: 10.1007/s12015-010-9163-0.
    1. Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem Cell–Based Therapies for Spinal Cord Injury. J Spinal Cord Med. 2009;32(2):105–14. doi: 10.1080/10790268.2009.11760761.
    1. Eirin A, Lerman LO. Mesenchymal stem cell treatment for chronic renal failure. Stem Cell Res Ther. 2015;5(4):1–8.
    1. Han YF, Tao R, Sun TJ, Chai JK, Xu G, Liu J. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology. 2013;65(5):819–27. doi: 10.1007/s10616-012-9528-0.
    1. Smith JR, Pfeifer K, Petry F, Powell N, Delzeit J, Weiss ML. Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method. Stem Cells Int. 2016;2016:6810980.
    1. Peired AJ, Sisti A, Romagnani P. Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int. 2016;2016:4798639.
    1. Saporta S, Kim J, Willing AE, Fu ES, Davis CD, Sanberg PR. Human Umbilical Cord Blood Stem Cells Infusion in Spinal Cord Injury: Engraftment and Beneficial Influence on Behavior. J Hematother Stem Cell Res. 2003;12(3):271–8. doi: 10.1089/152581603322023007.
    1. Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, et al. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother. 2017;90:85–92. doi: 10.1016/j.biopha.2017.03.035.
    1. Rosenfeld J, Bandopadhayay P, Goldschlager T, Brown D. The Ethics of the Treatment of Spinal Cord Injury: Stem Cell Transplants, Motor Neuroprosthetics, and Social Equity. Top Spinal Cord Inj Rehabil. 2008;14(1):76–88. doi: 10.1310/sci1401-76.
    1. Ahuja CS, Nori S, Tetreault L, et al. Traumatic Spinal Cord Injury—Repair and Regeneration. Neurosurgery. 2017;80(3S):S9–22. doi: 10.1093/neuros/nyw080.
    1. Badner A, Siddiqui AM, Fehlings MG. Spinal Cord Injuries: How Could Cell Therapy Help ? Expert Opin Biol Ther. 2017;17(5):529–41. doi: 10.1080/14712598.2017.1308481.
    1. Kilpinen L, Impola U, Sankkila L, et al. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles. 2013;2:10.3402. doi: 10.3402/jev.v2i0.21927.

Source: PubMed

3
Předplatit