Formula feeding and immature gut microcirculation promote intestinal hypoxia, leading to necrotizing enterocolitis

Yong Chen, Yuhki Koike, Lijun Chi, Abdalla Ahmed, Hiromu Miyake, Bo Li, Carol Lee, Paul Delgado-Olguín, Agostino Pierro, Yong Chen, Yuhki Koike, Lijun Chi, Abdalla Ahmed, Hiromu Miyake, Bo Li, Carol Lee, Paul Delgado-Olguín, Agostino Pierro

Abstract

Major risk factors for necrotizing enterocolitis (NEC) are formula feeding and prematurity; however, their pathogenic mechanisms are unknown. Here, we found that insufficient arginine/nitric oxide synthesis limits blood flow in the intestinal microvasculature, leading to hypoxia, mucosal damage and NEC in the premature intestine after formula feeding. Formula feeding led to increased intestinal hypoxia in pups at postnatal day (P)1 and P5, but not in more mature pups at P9. Accordingly, blood flow in the intestinal microvasculature increased after formula feeding in P9 pups only. mRNA profiling revealed that regulators of arginine/nitric oxide synthesis are at higher levels in endothelial cells of the intestine in P9 than in P1 pups. Importantly, arginine supplementation increased intestinal microvasculature blood flow and prevented NEC, whereas an arginine antagonist exacerbated NEC. Our results suggest that balancing intestinal oxygen demand and supply in the premature intestine by modulating arginine/nitric oxide could be used to prevent NEC.This article has an associated First Person interview with the first author of the paper.

Keywords: Hypoxia; Microvascular flow dynamics; Microvasculature dilation; Necrotizing enterocolitis; Premature intestine circulation; Vascular maturation.

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

© 2019. Published by The Company of Biologists Ltd.

Figures

Fig. 1.
Fig. 1.
Formula feeding induces mucosal hypoxia in experimental NEC. (A) Haematoxylin and Eosin (HE) and pimonidazole staining in ileum from pups: dam fed (DF; n=9), DF+lipopolysaccharide (LPS) (n=8), formula+LPS (n=9), and formula+LPS+systemic preprandial hypoxia (n=10). Arrowheads point to tips of villi in DF and DF+LPS pups; arrows point to damaged villi in formula+LPS and formula+LPS+hypoxia pups. Samples were collected 90 min after feeding. Scale bars: 100 µm. (B) NEC severity score. (C) Pimonidazole grading. (D) qRT-PCR showing normalized expression levels of Il-6, Il-1b, Il-10 and Tnf-a mRNA in ileum. (E) Western blot analysis of HIF-1α in ileum. (F) qRT-PCR of GLUT-1 and PHD-3 in ileum. (G) qRT-PCR of GLUT-1 and PHD-3 in liver, kidney and heart. *P<0.05, **P<0.01, ***P<0.001. All values are mean±s.d.
Fig. 2.
Fig. 2.
Formula feeding induces mucosal hypoxia in experimental NEC. (A,B) qRT-PCR of GLUT-1 (A) and PHD-3 (B) in proximal (jejunum), mid and distal (ileum) small intestine of P5 pups at different postfeeding time points. (C,D) Pimonidazole staining (C) and pimonidazole grading (D) of ileal tissue from P1, P5 and P9 pups fed with PBS or hyperosmolar formula (n=6). Scale bars: 100 µm. (E-G) qRT-PCR of GLUT-1 (E), PHD-3 (F) and Il-6 (G) on ileum from P1, P5 and P9 pups fed with PBS or hyperosmolar formula. *P<0.05, **P<0.01. All values are mean±s.d.
Fig. 3.
Fig. 3.
Inadequate intestinal haemodynamic response to feeding in the immature intestine in early neonatal life. (A) Set-up for two-photon microscopy. RosamT/mG/+;Tie2-Cre pups under general anaesthesia and laparotomy for visualization of the intestinal microcirculation. (B) Plane of imaging. (C) Representative image of intestinal submucosal flow using in vivo two-photon microscopy. A, arteriole; V, venule. White bar, arteriole diameter; yellow bar, platelet movement trajectory. (D-F) Quantification of arterial diameter (D), arterial velocity (E) and arterial flow (F) at several time points after gavage formula feeding in P1, P5 and P9 pups. (G) Plane of imaging for visualizing the villus microvasculature. (H) Representative micrographs from two-photon microscopy of the capillary network in intestinal villi of the jejunum and ileum in P1, P5 and P9 RosamT/mG/+;Tie2-Cre pups. At least three animals from each age group were analysed. For all graphs, error bars represent ±s.e.m. Scale bars: 100 µM.
Fig. 4.
Fig. 4.
The mature intestine upregulates arginine synthesis and concomitantly downregulates endothelin (ET-1) signalling pathways. (A) Hierarchical clustering of the transcriptome of intestinal endothelial cells in P1 (n=4) and P9 (n=5) RosamT/mG/+;Tie2-Cre pups. (B) Upregulated pathways in P9 compared to P1 intestinal endothelial cells. (C) Volcano plot showing increased expression of genes in the arginine biosynthesis pathway (red), and downregulation of genes in the ET-1 signalling pathway (blue), in P9 versus P1 intestinal endothelial cells. (D) qRT-PCR showing normalized expression of genes in the arginine biosynthesis pathway in ileum from P1 and P9 pups. (E) Immunostaining of CPS1 (green) in P1 and P9 intestine. Nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI). Scale bar: 100 µm. (F) Downregulated pathways in P9 versus P1 pups. (G) qRT-PCR showing normalized expression of genes in the endothelin pathway in ileum from P1 and P9 pups. *P<0.05, **P<0.01, ***P<0.001. All values are mean±s.d.
Fig. 5.
Fig. 5.
Inhibition of nitric oxide synthesis compromises postprandial hyperaemia and increases NEC severity, whereas arginine supplementation reduces NEC severity. (A) Micrographs from two-photon microscopy were used to quantify arterial diameter at several time points after gavage feeding of P5 pups with formula supplemented with arginine. (B) Quantification of arterial diameter change at several time points after gavage feeding of P9 pups with formula supplemented with L-NAME. (C) HE and pimonidazole staining in ileum of control (n=8), NEC (n=11), NEC+L-NAME (N=8) and NEC+arginine pups (n=9). Arrows point to damaged villi. (D) NEC severity score. (E) Pimonidazole grading. (F) qRT-PCR of Il-6 in ileum. (G) qRT-PCR of Tnf-a in ileum. Scale bars: 100 μm. *P<0.05, **P<0.01, ***P<0.001. All values are mean±s.d.

References

    1. Ballance W. A., Dahms B. B., Shenker N. and Kliegman R. M. (1990). Pathology of neonatal necrotizing enterocolitis: a ten-year experience. J. Pediatr. 117, S6-S13. 10.1016/S0022-3476(05)81124-2
    1. Bohlen H. G. (1987). Determinants of resting and passive intestinal vascular pressures in rat and rabbit. Am. J. Physiol. 253, G587-G595. 10.1152/ajpgi.1987.253.5.g587
    1. Boost-II Australia and United Kingdom Collaborative Groups, Tarnow-Mordi W., Stenson B., Kirby A., Juszczak E., Donoghoe M., Deshpande S., Morley C., King A., Doyle L. W. et al. (2016). Outcomes of two trials of oxygen-saturation targets in preterm infants. N. Engl. J. Med. 374, 749-760. 10.1056/NEJMoa1514212
    1. Chen F., Bajwa N. M., Rimensberger P. C., Posfay-Barbe K. M. and Pfister R. E. and Swiss Neonatal Network (2016a). Thirteen-year mortality and morbidity in preterm infants in Switzerland. Arch. Dis. Child. Fetal Neonatal Ed. 101, F377-F383. 10.1136/archdischild-2015-308579
    1. Chen Y., Chang K. T. E., Lian D. W. Q., Lu H., Roy S., Laksmi N. K., Low Y., Krishnaswamy G., Pierro A. and Ong C. C. P. (2016b). The role of ischemia in necrotizing enterocolitis. J. Pediatr. Surg. 51, 1255-1261. 10.1016/j.jpedsurg.2015.12.015
    1. Chen Y., Koike Y., Miyake H., Li B., Lee C., Hock A., Zani A. and Pierro A. (2016c). Formula feeding and systemic hypoxia synergistically induce intestinal hypoxia in experimental necrotizing enterocolitis. Pediatr. Surg. Int. 32, 1115-1119. 10.1007/s00383-016-3997-8
    1. Contreras M. T., Gallardo M. J., Betancourt L. R., Rada P. V., Ceballos G. A., Hernandez L. E. and Hernandez L. F. (2017). Correlation between plasma levels of arginine and citrulline in preterm and full-term neonates: therapeutical implications. J. Clin. Lab. Anal. 31, e22134 10.1002/jcla.22134
    1. Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M. and Gingeras T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. 10.1093/bioinformatics/bts635
    1. Egan C. E., Sodhi C. P., Good M., Lin J., Jia H., Yamaguchi Y., Lu P., Ma C., Branca M. F., Weyandt S. et al. (2016). Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J. Clin. Invest. 126, 495-508. 10.1172/JCI83356
    1. Fang S., Kempley S. T. and Gamsu H. R. (2001). Prediction of early tolerance to enteral feeding in preterm infants by measurement of superior mesenteric artery blood flow velocity. Arch. Dis. Child. Fetal Neonatal Ed. 85, F42-F45. 10.1136/fn.85.1.F42
    1. Fitzgibbons S. C., Ching Y., Yu D., Carpenter J., Kenny M., Weldon C., Lillehei C., Valim C., Horbar J. D. and Jaksic T. (2009). Mortality of necrotizing enterocolitis expressed by birth weight categories. J. Pediatr. Surg. 44, 1072-1076 discussion 1075-1076 10.1016/j.jpedsurg.2009.02.013
    1. Fujita N., Markova D., Anderson D. G., Chiba K., Toyama Y., Shapiro I. M. and Risbud M. V. (2012). Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc: distinct roles of PHD2 and PHD3 proteins in controlling HIF-1alpha activity in hypoxia. J. Biol. Chem. 287, 16975-16986. 10.1074/jbc.M111.334466
    1. Guthrie S. O., Gordon P. V., Thomas V., Thorp J. A., Peabody J. and Clark R. H. (2003). Necrotizing enterocolitis among neonates in the United States. J. Perinatol. 23, 278-285. 10.1038/sj.jp.7210892
    1. Havranek T., Rahimi M., Hall H. and Armbrecht E. (2015). Feeding preterm neonates with patent ductus arteriosus (PDA): intestinal blood flow characteristics and clinical outcomes. J. Matern. Fetal Neonatal Med. 28, 526-530. 10.3109/14767058.2014.923395
    1. Hein-Nielsen A. L., Petersen S. M. and Greisen G. (2015). Unchanged incidence of necrotising enterocolitis in a tertiary neonatal department. Dan. Med. J. 62, A5091.
    1. Holman R. C., Stoll B. J., Curns A. T., Yorita K. L., Steiner C. A. and Schonberger L. B. (2006). Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr. Perinat. Epidemiol. 20, 498-506. 10.1111/j.1365-3016.2006.00756.x
    1. Kisanuki Y. Y., Hammer R. E., Miyazaki J.-I., Williams S. C., Richardson J. A. and Yanagisawa M. (2001). Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230-242. 10.1006/dbio.2000.0106
    1. Koike Y., Li B., Chen Y., Miyake H., Lee C., Chi L., Wu R., Inoue M., Uchida K., Kusunoki M. et al. (2018). Live imaging of fetal intra-abdominal organs using two-photon laser-scanning microscopy. Methods Mol. Biol. 1752, 63-69. 10.1007/978-1-4939-7714-7_6
    1. Kosloske A. M. (1994). Epidemiology of necrotizing enterocolitis. Acta Paediatr. 83 Suppl. 396, 2-7. 10.1111/j.1651-2227.1994.tb13232.x
    1. Li B., Lee C., Filler T., Hock A., Wu R. Y., Li Q., Chen S., Koike Y., Ip W., Chi L. et al. (2017). Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci. Rep. 7, 46616 10.1038/srep46616
    1. Liao Y., Smyth G. K. and Shi W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930. 10.1093/bioinformatics/btt656
    1. Llanos A. R., Moss M. E., Pinzon M. C., Dye T., Sinkin R. A. and Kendig J. W. (2002). Epidemiology of neonatal necrotising enterocolitis: a population-based study. Paediatr. Perinat. Epidemiol. 16, 342-349. 10.1046/j.1365-3016.2002.00445.x
    1. Love M. I., Huber W. and Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 10.1186/s13059-014-0550-8
    1. Matheson P. J., Wilson M. A. and Garrison R. N. (2000). Regulation of intestinal blood flow. J. Surg. Res. 93, 182-196. 10.1006/jsre.2000.5862
    1. Mi H., Huang X., Muruganujan A., Tang H., Mills C., Kang D. and Thomas P. D. (2017). PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183-D189. 10.1093/nar/gkw1138
    1. Miyake H., Chen Y., Koike Y., Hock A., Li B., Lee C., Zani A. and Pierro A. (2016). Osmolality of enteral formula and severity of experimental necrotizing enterocolitis. Pediatr. Surg. Int. 32, 1153-1156. 10.1007/s00383-016-3998-7
    1. Moonen R. M., Cavallaro G., Huizing M. J., González-Luis G. E., Mosca F. and Villamor E. (2016). Association between the p.Thr1406Asn polymorphism of the carbamoyl-phosphate synthetase 1 gene and necrotizing enterocolitis: a prospective multicenter study. Sci. Rep. 6, 36999 10.1038/srep36999
    1. Murdoch E. M., Sinha A. K., Shanmugalingam S. T., Smith G. C. S. and Kempley S. T. (2006). Doppler flow velocimetry in the superior mesenteric artery on the first day of life in preterm infants and the risk of neonatal necrotizing enterocolitis. Pediatrics 118, 1999-2003. 10.1542/peds.2006-0272
    1. Muzumdar M. D., Tasic B., Miyamichi K., Li L. and Luo L. (2007). A global double-fluorescent Cre reporter mouse. Genesis 45, 593-605. 10.1002/dvg.20335
    1. Nankervis C. A. and Nowicki P. T. (1995). Role of nitric oxide in regulation of vascular resistance in postnatal intestine. Am. J. Physiol. 268, G949-G958. 10.1152/ajpgi.1995.268.6.G949
    1. Nankervis C. A. and Nowicki P. T. (2000). Role of endothelin-1 in regulation of the postnatal intestinal circulation. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G367-G375. 10.1152/ajpgi.2000.278.3.G367
    1. Neu J. and Walker W. A. (2011). Necrotizing enterocolitis. N. Engl. J. Med. 364, 255-264. 10.1056/NEJMra1005408
    1. Niño D. F., Sodhi C. P. and Hackam D. J. (2016). Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 13, 590-600. 10.1038/nrgastro.2016.119
    1. Nowicki P. T., Stonestreet B. S., Hansen N. B., Yao A. C. and Oh W. (1983). Gastrointestinal blood flow and oxygen consumption in awake newborn piglets: effect of feeding. Am. J. Physiol. 245, G697-G702. 10.1152/ajpgi.1983.245.5.G697
    1. Pearson F., Johnson M. J. and Leaf A. A. (2013). Milk osmolality: does it matter? Arch. Dis. Child. Fetal Neonatal Ed. 98, F166-F169. 10.1136/adc.2011.300492
    1. Proctor J. M., Zang K., Wang D., Wang R. and Reichardt L. F. (2005). Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J. Neurosci. 25, 9940-9948. 10.1523/JNEUROSCI.3467-05.2005
    1. Rademakers S. E., Lok J., van der Kogel A. J., Bussink J. and Kaanders J. H. A. M. (2011). Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11, 167 10.1186/1471-2407-11-167
    1. Schat T. E., Schurink M., van der Laan M. E., Hulscher J. B. F., Hulzebos C. V., Bos A. F. and Kooi E. M. W. (2016). Near-infrared spectroscopy to predict the course of necrotizing enterocolitis. PLoS ONE 11, e0154710 10.1371/journal.pone.0154710
    1. Shah P. S., Shah V. S. and Kelly L. E. (2017). Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst. Rev. 4, CD004339 10.1002/14651858.CD004339.pub4
    1. Sieber C., Beglinger C., Jaeger K., Hildebrand P. and Stalder G. A. (1991). Regulation of postprandial mesenteric blood flow in humans: evidence for a cholinergic nervous reflex. Gut 32, 361-366. 10.1136/gut.32.4.361
    1. Sironi L., Bouzin M., Inverso D., D'Alfonso L., Pozzi P., Cotelli F., Guidotti L. G., Iannacone M., Collini M. and Chirico G. (2014). In vivo flow mapping in complex vessel networks by single image correlation. Sci. Rep. 4, 7341 10.1038/srep07341
    1. Song J., Wolf S. E., Wu X.-W., Finnerty C. C., Gauglitz G. G., Herndon D. N. and Jeschke M. G. (2009). Starvation-induced proximal gut mucosal atrophy diminished with aging. JPEN J. Parenter. Enteral. Nutr. 33, 411-416. 10.1177/0148607108325178
    1. Stout G., Lambert D. K., Baer V. L., Gordon P. V., Henry E., Wiedmeier S. E., Stoddard R. A., Miner C. A., Schmutz N., Burnett J. et al. (2008). Necrotizing enterocolitis during the first week of life: a multicentered case-control and cohort comparison study. J. Perinatol. 28, 556-560. 10.1038/jp.2008.36
    1. Uauy R. D., Fanaroff A. A., Korones S. B., Phillips E. A., Phillips J. B. and Wright L. L. and Members of the National Institute of Child Health and Human Development Neonatal Research Network (1991). Necrotizing enterocolitis in very low birth weight infants: biodemographic and clinical correlates. J. Pediatr. 119, 630-638. 10.1016/S0022-3476(05)82418-7
    1. Wang G. L., Jiang B. H., Rue E. A. and Semenza G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510-5514. 10.1073/pnas.92.12.5510
    1. Wang F., Wang J., Liu D. and Su Y. (2010). Normalizing genes for real-time polymerase chain reaction in epithelial and nonepithelial cells of mouse small intestine. Anal. Biochem. 399, 211-217. 10.1016/j.ab.2009.12.029
    1. Ward J. B. J., Keely S. J. and Keely S. J. (2014). Oxygen in the regulation of intestinal epithelial transport. J. Physiol. 592, 2473-2489. 10.1113/jphysiol.2013.270249
    1. Watkins D. J. and Besner G. E. (2013). The role of the intestinal microcirculation in necrotizing enterocolitis. Semin. Pediatr. Surg. 22, 83-87. 10.1053/j.sempedsurg.2013.01.004
    1. Wu R. Y., Li B., Koike Y., Määttänen P., Miyake H., Cadete M., Johnson-Henry K. C., Botts S. R., Lee C., Abrahamsson T. R. et al. (2019). Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol. Nutr. Food Res. 63, e1800658 10.1002/mnfr.201800658
    1. Yao A. C., Gootman P. M., Frankfurt P. P. and DiRusso S. M. (1986). Age-related superior mesenteric arterial flow changes in piglets: effects of feeding and hemorrhage. Am. J. Physiol. 251, G718-G723. 10.1152/ajpgi.1986.251.5.G718
    1. Yazji I., Sodhi C. P., Lee E. K., Good M., Egan C. E., Afrazi A., Neal M. D., Jia H., Lin J., Ma C. et al. (2013). Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc. Natl. Acad. Sci. USA 110, 9451-9456. 10.1073/pnas.1219997110
    1. Yu V. Y., Joseph R., Bajuk B., Orgill A. and Astbury J. (1984). Perinatal risk factors for necrotizing enterocolitis. Arch. Dis. Child. 59, 430-434. 10.1136/adc.59.5.430
    1. Zamora I. J., Stoll B., Ethun C. G., Sheikh F., Yu L., Burrin D. G., Brandt M. L. and Olutoye O. O. (2015). Low abdominal NIRS values and elevated plasma intestinal fatty acid-binding protein in a premature piglet model of necrotizing enterocolitis. PLoS ONE 10, e0125437 10.1371/journal.pone.0125437
    1. Zani A., Zani-Ruttenstock E., Peyvandi F., Lee C., Li B. and Pierro A. (2016). A spectrum of intestinal injury models in neonatal mice. Pediatr. Surg. Int. 32, 65-70. 10.1007/s00383-015-3813-x
    1. Zeineldin M. and Neufeld K. (2012). Isolation of epithelial cells from mouse gastrointestinal tract for western blot or RNA analysis. Bio Protoc. 2, e292 10.21769/BioProtoc.292

Source: PubMed

3
Předplatit