Kaposiform hemangioendothelioma: current knowledge and future perspectives

Yi Ji, Siyuan Chen, Kaiying Yang, Chunchao Xia, Li Li, Yi Ji, Siyuan Chen, Kaiying Yang, Chunchao Xia, Li Li

Abstract

Kaposiform hemangioendothelioma (KHE) is a rare vascular neoplasm with high morbidity and mortality. The initiating mechanism during the pathogenesis of KHE has yet to be discovered. The main pathological features of KHE are abnormal angiogenesis and lymphangiogenesis. KHEs are clinically heterogeneous and may develop into a life-threatening thrombocytopenia and consumptive coagulopathy, known as the Kasabach-Merritt phenomenon (KMP). The heterogeneity and the highly frequent occurrence of disease-related comorbidities make the management of KHE challenging. Currently, there are no medications approved by the FDA for the treatment of KHE. Multiple treatment regimens have been used with varying success, and new clinical trials are in progress. In severe patients, multiple agents with variable adjuvant therapies are given in sequence or in combination. Recent studies have demonstrated a satisfactory efficacy of sirolimus, an inhibitor of mammalian target of rapamycin, in the treatment of KHE. Novel targeted treatments based on a better understanding of the pathogenesis of KHE are needed to maximize patient outcomes and quality of life. This review summarizes the epidemiology, etiology, pathophysiology, clinical features, diagnosis and treatments of KHE. Recent new concepts and future perspectives for KHE will also be discussed.

Keywords: Angiogenesis; Kaposiform hemangioendothelioma; Kasabach-Merritt phenomenon; Lymphangiogenesis; Treatment.

Conflict of interest statement

The authors declare that they have no competing interests, either financial or non-financial, that could be perceived as prejudicing the impartiality of the research reported.

Figures

Fig. 1
Fig. 1
A 3-month-old male infant presenting KHE associated with KMP. The tumor lesion grew progressively after the first week of age and extended through the whole thigh, scrotum and abdominal wall, with ‘extensive thrombocytopenic purpura’ as described by Kasabach and Merritt in 1940
Fig. 2
Fig. 2
G-protein-coupled receptors (GPCRs) participate in different physiological processes. The binding of ligands to GPCRs triggers a universal G protein allosteric mechanism that promotes the exchange of GDP with GTP on the α subunit of heterotrimeric G proteins. This event causes the dissociation of Gα from the dimer. Gα subunits mediate signals between GPCRs and intracellular signaling cascades. These signaling pathways include the PI3K/AKT/mTOR and MAPK/ERK pathways, both of which can mediate different biological processes, such as cell proliferation, migration and survival. Mutations in GPCRs and G proteins have been found at a very high frequency in tumor cells and endothelial cells in vascular anomalies
Fig. 3
Fig. 3
VEGF-C/VEGFR3 and Ang-2/Tie-2 signaling pathways play an important role in lymphangiogenesis. The binding of VEGF-C can stimulate the activation of VEGFR-3 and induce downstream PI3K/Akt/mTOR signaling, which mediates lymphangiogenesis. VEGF-C binding to NRP-2 can form a complex with VEGFR-3, further activating the VEGFR-3 signaling that enhances the proliferation of lymphatic endothelial cells (LECs) and lymphangiogenesis. Ang-2 ligand-induced Tie-2 activation triggers Akt/mTOR signaling, which in LECs is mainly mediated by PIK3CA. Gene-targeting experiments have identified that the Ang-2/Tie-2 signaling system is needed for physiological and pathological remodeling of lymphatic vessels. Sirolimus (rapamycin), which is an inhibitor of mTOR, complements current antilymphatic strategies in the treatment of vascular anomalies, such as KHE
Fig. 4
Fig. 4
Deep KHE with bone and joint destruction in a 3.5-year-old girl. The patient had been diagnosed with a left-hip KHE associated with KMP at 1 year of age. She received a partial resection at the local hospital. Although surgical excision improved the associated KMP, she exhibited a progressively decreased hip range of motion. An anteroposterior pelvis radiograph showed right hip subluxation and progressive bone erosion in the left ilium and proximal femur before referral (a, b and c). Coronal T2-weighted MRI revealed a deep lesion infiltrating the left ilium and proximal femur at the time of referral to our department (d, e)
Fig. 5
Fig. 5
Clinical and MRI features of KHE with KMP. a A 2-month-old boy was found to have a chest wall mass after birth. The mass became progressively indurated and purpuric. The boy developed profound thrombocytopenia and consumptive coagulopathy. b Horizontal T1-weighted MRI revealed that the heterogeneous mass was isointense relative to the adjacent muscle on T1-weighted imaging. Horizontal (c) and sagittal (d) T2-weighted MRI revealed hyperintense lesions infiltrating the right lateral chest wall
Fig. 6
Fig. 6
Histopathological characteristics of KHE. aHematoxylin and eosin (H&E)-stained sections of KHE (original magnification × 100). The histologic hallmark of KHE was infiltrating, defined, rounded and confluent nodules, which were composed of spindle endothelial cells. b These spindle endothelial cells aligned to form malformed lymphatic channels and a slit-like vascular lumina (× 200). Immunohistochemical staining showed that the endothelial cells in KHE lesions were positive for the vascular endothelial markers CD31 (c, × 100) and CD34 (d, × 100) and the lymphatic endothelial marker D2–40 (e, × 100) but were negative for glucose transporter-1 and human herpes virus-8 staining (data not shown). Ki-67 was noted in only a few nuclei in the lesion (f, × 100)
Fig. 7
Fig. 7
Rapidly involuting congenital hemangiomas (RICH). a RICH is fully formed at birth and then involutes, mostly during the first year of life. The patient’s hematologic parameters were within the normal reference ranges. b The same RICH involuted rapidly without any treatment. By 9 months of age, the lesion had involuted completely, leaving dermal atrophy
Fig. 8
Fig. 8
Congenital KHE associated with KMP on the right face. Congenital KHEs with KMP likely represent a period of temporary and partial remission shortly after birth. The signs and symptoms may alleviate spontaneously. However, rebound growth of the lesions accompanying severe KMP would reoccur within the next several days or weeks. a The parents’ photograph revealed a bluish, swollen and firm vascular mass on the right face after birth (2 days of age). Her platelet count was 7 × 109/L. Without any special treatment, the tumor became soft and was stagnant in size. Her platelet count reached a highest value of 161 × 109/L (b: 1 week of age, c: 6.5 weeks of age). Subsequently, however, the tumor became progressively enlarged and displayed obvious ecchymosis (d: 8 weeks of age). The patient’s platelet count dropped to 3 × 109/L. She was treated with a combination therapy of sirolimus (0.8 mg/m2 administered twice daily) and prednisolone (2 mg/kg/d). One (e) and 4 weeks (f) after treatment. Within 10 days of combination therapy, the girl’s platelet level normalized. The prednisolone was tapered and discontinued within the following 4 weeks, and sirolimus was continued. G, Twelve months after treatment. H, Photograph at 26 months of age (24 months of treatment) demonstrates a nearly complete involution of the lesion. Sirolimus was then tapered and discontinued

References

    1. O'Rafferty C, O'Regan GM, Irvine AD, Smith OP. Recent advances in the pathobiology and management of Kasabach-Merritt phenomenon. Brit J Haematol. 2015;171(1):38–51. doi: 10.1111/bjh.13557.
    1. Lyons LL, North PE, Mac-Moune LF, Stoler MH, Folpe AL, Weiss SW. Kaposiform hemangioendothelioma: a study of 33 cases emphasizing its pathologic, immunophenotypic, and biologic uniqueness from juvenile hemangioma. Am J Surg Pathol. 2004;28(5):559–568. doi: 10.1097/00000478-200405000-00001.
    1. Mulliken JB, Anupindi S, Ezekowitz RAB, Mihm MC. Case 13-2004. New Engl J Med. 2004;350(17):1764–1775. doi: 10.1056/NEJMcpc049002.
    1. Schaefer BA, Wang D, Merrow AC, Dickie BH, Adams DM. Long-term outcome for kaposiform hemangioendothelioma: a report of two cases. Pediatr Blood Cancer. 2017;64(2):284–286. doi: 10.1002/pbc.26224.
    1. Fernandez-Pineda I, Lopez-Gutierrez JC, Chocarro G, Bernabeu-Wittel J, Ramirez-Villar GL. Long-term outcome of vincristine-aspirin-ticlopidine (VAT) therapy for vascular tumors associated with kasabach-Merritt phenomenon. Pediatr Blood Cancer. 2013;60(9):1478–1481. doi: 10.1002/pbc.24543.
    1. Kasabach H, Merritt K. Capillary hemangioma with extensive purpurareport of a case. Am J Dis Child. 1940;5(59):1093–1070.
    1. Zukerberg LR, Nickoloff BJ, Weiss SW. Kaposiform hemangioendothelioma of infancy and childhood. An aggressive neoplasm associated with Kasabach-Merritt syndrome and lymphangiomatosis. Am J Surg Pathol. 1993;17(4):321–328. doi: 10.1097/00000478-199304000-00001.
    1. Enjolras O, Wassef M, Mazoyer E, Frieden IJ, Rieu PN, Drouet L, et al. Infants with Kasabach-Merritt syndrome do not have "true" hemangiomas. J Pediatr. 1997;130(4):631–640. doi: 10.1016/S0022-3476(97)70249-X.
    1. Sarkar M, Mulliken JB, Kozakewich HP, Robertson RL, Burrows PE. Thrombocytopenic coagulopathy (Kasabach-Merritt phenomenon) is associated with Kaposiform hemangioendothelioma and not with common infantile hemangioma. Plast Reconstr Surg. 1997;100(6):1377–1386. doi: 10.1097/00006534-199711000-00001.
    1. Adams DM, Brandão LR, Peterman CM, Gupta A, Patel M, Fishman S, et al. Vascular anomaly cases for the pediatric hematologist oncologists—An interdisciplinary review. Pediatr Blood Cancer. 2018;65(1):e26716. doi: 10.1002/pbc.26716.
    1. Mahajan P, Margolin J, Iacobas I. Kasabach-Merritt Phenomenon: Classic Presentation and Management Options. Clin Med Insights Blood Disord. 2017;10:1179545X17699849. doi: 10.1177/1179545X17699849.
    1. Enjolras O, Mulliken JB, Wassef M, Frieden IJ, Rieu PN, Burrows PE, et al. Residual lesions after Kasabach-Merritt phenomenon in 41 patients. J Am Acad Dermatol. 2000;42(2 Pt 1):225–235. doi: 10.1016/S0190-9622(00)90130-0.
    1. Croteau SE, Liang MG, Kozakewich HP, Alomari AI, Fishman SJ, Mulliken JB, et al. Kaposiform hemangioendothelioma: atypical features and risks of Kasabach-Merritt phenomenon in 107 referrals. J Pediatr. 2013;162(1):142–147. doi: 10.1016/j.jpeds.2012.06.044.
    1. Ji Y, Yang K, Peng S, Chen S, Xiang B, Xu Z, et al. Kaposiform haemangioendothelioma: clinical features, complications and risk factors for Kasabach-Merritt phenomenon. Br J Dermatol. 2018;179(2):457–463.
    1. Karnes JC, Lee BT, Phung T, Alomari AI, Mulliken JB, Greene AK. Adult-onset kaposiform hemangioendothelioma in a posttraumatic site. Ann Plast Surg. 2009;62(4):456–458. doi: 10.1097/SAP.0b013e318184aafc.
    1. Goyal A, Babu SN, Kim V, Katariya S, Rao KL. Hemangioendothelioma of liver and spleen: trauma-induced consumptive coagulopathy. J Pediatr Surg. 2002;37(10):E29. doi: 10.1053/jpsu.2002.35440.
    1. Kim CY, Nam YH, Kim GD, Oh CW. Tufted angioma in site of healed herpes zoster: isotopic response. Clin Exp Dermatol. 2006;31(5):714–715. doi: 10.1111/j.1365-2230.2006.02187.x.
    1. Zeng YP, Ma DL. Tufted angioma arising at a site of BCG vaccination. Eur J Dermatol. 2013;23(1):102–103.
    1. Choi JW, Na JI, Hong JS, Kwon SH, Byun SY, Cho KH, et al. Intractable tufted Angioma associated with Kasabach-Merritt syndrome. Ann Dermatol. 2013;25(1):129. doi: 10.5021/ad.2013.25.1.129.
    1. Yue X, Zhao X, Dai Y, Shu Q. Episode of Kasabach-Merritt phenomenon following Japanese encephalitis vaccination: case report. Vaccine. 2017;35(48):6594–6597. doi: 10.1016/j.vaccine.2017.08.011.
    1. Ji Y, Chen S, Yang K, Xia C, Peng S. Development of Kasabach–Merritt phenomenon following vaccination: more than a coincidence? J Dermatol. 2018;45(10):1203–1206. doi: 10.1111/1346-8138.14598.
    1. Zhou S, Wang L, Panossian A, Anselmo D, Wu S, Venkatramani R. Refractory Kaposiform Hemangioendothelioma associated with the chromosomal translocation t(13;16)(q14;p13.3) Pediatr Dev Pathol. 2016;19(5):417–420. doi: 10.2350/15-09-1707-CR.1.
    1. Lim YH, Bacchiocchi A, Qiu J, Straub R, Bruckner A, Bercovitch L, et al. GNA14 somatic mutation causes congenital and sporadic vascular tumors by MAPK activation. Am J Hum Genet. 2016;99(2):443–450. doi: 10.1016/j.ajhg.2016.06.010.
    1. Bean GR, Joseph NM, Folpe AL, Horvai AE, Umetsu SE. RecurrentGNA14 mutations in anastomosing haemangiomas. Histopathology. 2018;73(2):354–357. doi: 10.1111/his.13519.
    1. Ayturk UM, Couto JA, Hann S, Mulliken JB, Williams KL, Huang AY, et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital Hemangioma. Am J Hum Genet. 2016;98(6):1271. doi: 10.1016/j.ajhg.2016.05.010.
    1. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, et al. Sturge-weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–1979. doi: 10.1056/NEJMoa1213507.
    1. Couto JA, Huang L, Vivero MP, Kamitaki N, Maclellan RA, Mulliken JB, et al. Endothelial Cells from Capillary Malformations Are Enriched for Somatic GNAQ Mutations. Plast Reconstr Surg. 2016;137(1):77e–82e. doi: 10.1097/PRS.0000000000001868.
    1. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O'Brien JM, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602. doi: 10.1038/nature07586.
    1. Joseph NM, Brunt EM, Marginean C, Nalbantoglu I, Snover DC, Thung SN, et al. Frequent GNAQ and GNA14 mutations in hepatic small vessel neoplasm. The Am J Surg Pathol. 2018;42(9):1201–1207. doi: 10.1097/PAS.0000000000001110.
    1. Couto JA, Ayturk UM, Konczyk DJ, Goss JA, Huang AY, Hann S, et al. A somatic GNA11 mutation is associated with extremity capillary malformation and overgrowth. Angiogenesis. 2017;20(3):303–306. doi: 10.1007/s10456-016-9538-1.
    1. Hutchings CJ, Koglin M, Olson WC, Marshall FH. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov. 2017;16(9):661. doi: 10.1038/nrd.2017.173.
    1. Kimple AJ, Bosch DE, Giguere PM, Siderovski DP. Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev. 2011;63(3):728–749. doi: 10.1124/pr.110.003038.
    1. Greene AK, Goss JA. Vascular Anomalies. Plast Reconstr Surg. 2018;141(5):709e–717e. doi: 10.1097/PRS.0000000000004294.
    1. Dadras SS, Skrzypek A, Nguyen L, Shin JW, Schulz MM, Arbiser J, et al. Prox-1 promotes invasion of kaposiform hemangioendotheliomas. J Invest Dermatol. 2008;128(12):2798–2806. doi: 10.1038/jid.2008.176.
    1. Glaser K, Dickie P, Dickie BH. Proliferative cells from Kaposiform Lymphangiomatosis lesions resemble mesenchyme stem cell–like Pericytes defective in vessel formation. J Pediatr Hematol Oncol. 2018;40(8):e495–e504. doi: 10.1097/MPH.0000000000001284.
    1. Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, et al. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. 2010;115(2):418–429. doi: 10.1182/blood-2008-12-196840.
    1. Saito M, Gunji Y, Kashii Y, Odaka J, Yamauchi T, Kanai N, et al. Refractory kaposiform hemangioendothelioma that expressed vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3: a case report. J Pediatr Hematol Oncol. 2009;31(3):194–197. doi: 10.1097/MPH.0b013e3181979c83.
    1. Folpe AL, Veikkola T, Valtola R, Weiss SW. Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi's sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol. 2000;13(2):180–185. doi: 10.1038/modpathol.3880033.
    1. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001;61(5):1786–1790.
    1. Varney ML, Singh RK. VEGF-C-VEGFR3/Flt4 axis regulates mammary tumor growth and metastasis in an autocrine manner. Am J Cancer Res. 2015;5(2):616–628.
    1. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–165. doi: 10.1016/j.ceb.2008.12.012.
    1. Hsu M, Pan M, Hung W. Two birds, one stone: double hits on tumor growth and Lymphangiogenesis by targeting vascular endothelial growth factor receptor 3. Cells. 2019;8(3):270. doi: 10.3390/cells8030270.
    1. Varricchi G, Granata F, Loffredo S, Genovese A, Marone G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J Am Acad Dermatol. 2015;73(1):144–153. doi: 10.1016/j.jaad.2015.03.041.
    1. Le Cras TD, Mobberley-Schuman PS, Broering M, Fei L, Trenor CC, Adams DM. Angiopoietins as serum biomarkers for lymphatic anomalies. Angiogenesis. 2017;20(1):163–173. doi: 10.1007/s10456-016-9537-2.
    1. Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 2017;16(9):635–661. doi: 10.1038/nrd.2016.278.
    1. Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol. 2008;10(5):527–537. doi: 10.1038/ncb1715.
    1. Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ Res. 2000;86(1):24–29. doi: 10.1161/01.RES.86.1.24.
    1. Gruman A, Liang MG, Mulliken JB, Fishman SJ, Burrows PE, Kozakewich HPW, et al. Kaposiform hemangioendothelioma without Kasabach-Merritt phenomenon. J Am Acad Dermatol. 2005;52(4):616–622. doi: 10.1016/j.jaad.2004.10.880.
    1. Arai E, Kuramochi A, Tsuchida T, Tsuneyoshi M, Kage M, Fukunaga M, et al. Usefulness of D2-40 immunohistochemistry for differentiation between kaposiform hemangioendothelioma and tufted angioma. J Cutan Pathol. 2006;33(7):492–497. doi: 10.1111/j.1600-0560.2006.00461.x.
    1. Debelenko LV, Perez-Atayde AR, Mulliken JB, Liang MG, Archibald TH, Kozakewich HP. D2-40 immunohistochemical analysis of pediatric vascular tumors reveals positivity in kaposiform hemangioendothelioma. Mod Pathol. 2005;18(11):1454–1460. doi: 10.1038/modpathol.3800444.
    1. Pollitt AY, Poulter NS, Gitz E, Navarro-Nunez L, Wang YJ, Hughes CE, et al. Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem. 2014;289(52):35695–35710. doi: 10.1074/jbc.M114.584284.
    1. Florez-Vargas A, Vargas SO, Debelenko LV, Perez-Atayde AR, Archibald T, Kozakewich HP, et al. Comparative analysis of D2-40 and LYVE-1 immunostaining in lymphatic malformations. Lymphology. 2008;41(3):103–110.
    1. Le Huu AR, Jokinen CH, Rubin BP, Mihm MC, Weiss SW, North PE, et al. Expression of prox1, lymphatic endothelial nuclear transcription factor, in Kaposiform hemangioendothelioma and tufted angioma. Am J Surg Pathol. 2010;34(11):1563–1573.
    1. Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood. 2006;108(6):1903–1910. doi: 10.1182/blood-2006-04-011551.
    1. Ikeda Y, Handa M, Kawano K, Kamata T, Murata M, Araki Y, et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest. 1991;87(4):1234–1240. doi: 10.1172/JCI115124.
    1. Di Vito C, Navone SE, Marfia G, Abdel HL, Mancuso ME, Pecci A, et al. Platelets from glioblastoma patients promote angiogenesis of tumor endothelial cells and exhibit increased VEGF content and release. Platelets. 2017;28(6):585–594. doi: 10.1080/09537104.2016.1247208.
    1. Wojtukiewicz MZ, Sierko E, Hempel D, Tucker SC, Honn KV. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017;36(2):249–262. doi: 10.1007/s10555-017-9673-1.
    1. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–760. doi: 10.1002/ijc.20657.
    1. Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 2000;96(13):4216–4221. doi: 10.1182/blood.V96.13.4216.
    1. Olsson AK, Cedervall J. The pro-inflammatory role of platelets in cancer. Platelets. 2018;29(6):569–573. doi: 10.1080/09537104.2018.1453059.
    1. Caine GJ, Lip GY, Stonelake PS, Ryan P, Blann AD. Platelet activation, coagulation and angiogenesis in breast and prostate carcinoma. Thromb Haemost. 2004;92(1):185–190. doi: 10.1160/TH03-11-0679.
    1. Chan S, Cassarino DS. Rapidly enlarging “bruise” on the Back of an infant. JAMA Dermatol. 2013;149(11):1337. doi: 10.1001/jamadermatol.2013.519.
    1. Zhang G, Gao Y, Liu X. Kaposiform haemangioendothelioma in a nine-year-old boy with Kasabach-Merritt phenomenon. Br J Haematol. 2017;179(1):9. doi: 10.1111/bjh.14837.
    1. Rodriguez V, Lee A, Witman PM, Anderson PA. Kasabach-Merritt Phenomenon. J Pediatr Hematol Oncol. 2009;31(7):522–526. doi: 10.1097/MPH.0b013e3181a71830.
    1. Mulliken JB, Young AE. Vascular birthmarks: hemangiomas and malformations: WB Saunders company. 1988.
    1. San Miguel FL, Spurbeck W, Budding C, Horton J. Kaposiform hemangioendothelioma: a rare cause of spontaneous hemothorax in infancy. Review of the literature. J Pediatr Surg. 2008;43(1):e37–e41. doi: 10.1016/j.jpedsurg.2007.08.068.
    1. Iwami D, Shimaoka S, Mochizuki I, Sakuma T. Kaposiform hemangioendothelioma of the mediastinum in a 7-month-old boy: a case report. J Pediatr Surg. 2006;41(8):1486–1488. doi: 10.1016/j.jpedsurg.2006.04.013.
    1. Duan L, Renzi S, Weidman D, Waespe N, Chami R, Manson D, et al. Sirolimus Treatment of an Infant With Intrathoracic Kaposiform Hemangioendothelioma Complicated by Life-threatening Pleural and Pericardial Effusions. J Pediatr Hematol Oncol. 2020;42(1):74–78
    1. Oza VS, Mamlouk MD, Hess CP, Mathes EF, Frieden IJ. Role of Sirolimus in advanced Kaposiform Hemangioendothelioma. Pediatr Dermatol. 2016;33(2):e88–e92. doi: 10.1111/pde.12787.
    1. Ji Y, Yang K, Chen S, Peng S, Lu G, Liu X. Musculoskeletal complication in kaposiform hemangioendothelioma without Kasabach–Merritt phenomenon: clinical characteristics and management. Cancer Manag Res. 2018;10:3325–3331. doi: 10.2147/CMAR.S171223.
    1. Keskindemirci G, Tugcu D, Aydogan G, Akcay A, Aktay AN, Er A, et al. Paravertebral and retroperitoneal vascular tumour presenting with Kasabach-Merritt phenomenon in childhood, Diagnosed with Magnetic Resonance Imaging. Case Rep Pediatr. 2015;2015:537530.
    1. Zhu Y, Qiu G, Zhao H, Liang J, Shi X. Kaposiform hemangioendothelioma with adolescent thoracic scoliosis: a case report and review of literature. Eur Spine J. 2011;20(Suppl 2):S309–S313. doi: 10.1007/s00586-011-1731-8.
    1. Ji Y, Chen S, Li L, Yang K, Xia C, Li L, et al. Kaposiform hemangioendothelioma without cutaneous involvement. J Cancer Res and Clin. 2018;144(12):2475–2484. doi: 10.1007/s00432-018-2759-5.
    1. Lindberg U, Svensson L, Hellmark T, Segelmark M, Shannon O. Increased platelet activation occurs in cystic fibrosis patients and correlates to clinical status. Thromb Res. 2018;162:32–37. doi: 10.1016/j.thromres.2017.12.012.
    1. Zaldivar MM, Pauels K, von Hundelshausen P, Berres ML, Schmitz P, Bornemann J, et al. CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis. Hepatology. 2010;51(4):1345–1353. doi: 10.1002/hep.23435.
    1. Schook CC, Mulliken JB, Fishman SJ, Alomari AI, Grant FD, Greene AK. Differential diagnosis of lower extremity enlargement in pediatric patients referred with a diagnosis of lymphedema. Plast Reconstr Surg. 2011;127(4):1571–1581. doi: 10.1097/PRS.0b013e31820a64f3.
    1. Hammill A, Mobberley-Schuman P, Adams D. Lymphoedema is a potential sequela of kaposiform haemangioendothelioma. Br J Dermatol. 2016;175(4):833–834. doi: 10.1111/bjd.14810.
    1. Konczyk DJ, Goss JA, Maclellan RA, Greene AK. Association between extremity kaposiform hemangioendothelioma and lymphedema. Pediatr Dermatol. 2018;35(1):e92–e93. doi: 10.1111/pde.13373.
    1. Kim DW, Chung JH, Ahn SH, Kwon T. Laryngeal kaposiform hemangioendothelioma: case report and literature review. Auris Nasus Larynx. 2010;37(2):258–262. doi: 10.1016/j.anl.2009.05.003.
    1. Wang C, Li Y, Xiang B, Li F, Chen S, Li L, et al. Successful Management of Pancreatic Kaposiform Hemangioendothelioma with Sirolimus. Pancreas. 2017;46(5):e39–e41. doi: 10.1097/MPA.0000000000000801.
    1. Leung M, Chao NS, Tang PM, Liu K, Chung KL. Pancreatic kaposiform hemangioendothelioma presenting with duodenal obstruction and kasabach-Merritt phenomenon: a neonate cured by whipple operation. European J Pediatr Surg Rep. 2014;2(1):7–9. doi: 10.1055/s-0033-1361835.
    1. Gong X, Ying H, Zhang Z, Wang L, Li J, Ding A, et al. Ultrasonography and magnetic resonance imaging features of kaposiform hemangioendothelioma and tufted angioma. J Dermatol. 2019;46(10):835–842. doi: 10.1111/1346-8138.15025.
    1. Drolet BA, Trenor CC, Brandão LR, Chiu YE, Chun RH, Dasgupta R, et al. Consensus-derived practice standards plan for complicated Kaposiform Hemangioendothelioma. J Pediatr. 2013;163(1):285–291. doi: 10.1016/j.jpeds.2013.03.080.
    1. Hu P, Zhou Z. Clinical and imaging features of Kaposiform Hemangioendothelioma. Br J Radiol. 2018;91(1086):20170798. doi: 10.1259/bjr.20170798.
    1. Ryu YJ, Choi YH, Cheon J, Kim WS, Kim I, Park JE, et al. Imaging findings of Kaposiform Hemangioendothelioma in children. Eur J Radiol. 2017;86:198–205. doi: 10.1016/j.ejrad.2016.11.015.
    1. Tollefson MM, Frieden IJ. Early growth of infantile hemangiomas: what parents' photographs tell us. Pediatrics. 2012;130(2):e314–e320. doi: 10.1542/peds.2011-3683.
    1. Krowchuk DP, Frieden IJ, Mancini AJ, Darrow DH, Blei F, Greene AK, et al. Clinical practice guideline for the Management of Infantile Hemangiomas. Pediatrics. 2019;143(1):e20183475. doi: 10.1542/peds.2018-3475.
    1. Léauté-Labrèze C, Harper JI, Hoeger PH. Infantile haemangioma. Lancet. 2017;390(10089):85–94. doi: 10.1016/S0140-6736(16)00645-0.
    1. Mulliken JB, Enjolras O. Congenital hemangiomas and infantile hemangioma: missing links. J Am Acad Dermatol. 2004;50(6):875–882. doi: 10.1016/j.jaad.2003.10.670.
    1. Nasseri E, Piram M, McCuaig CC, Kokta V, Dubois J, Powell J. Partially involuting congenital hemangiomas: a report of 8 cases and review of the literature. J Am Acad Dermatol. 2014;70(1):75–79. doi: 10.1016/j.jaad.2013.09.018.
    1. Knöpfel N, Wälchli R, Luchsinger I, Theiler M, Weibel L, Schwieger BA. Congenital hemangioma exhibiting postnatal growth. Pediatr Dermatol. 2019;36(4):548–549.
    1. Baselga E, Cordisco MR, Garzon M, Lee MT, Alomar A, Blei F. Rapidly involuting congenital haemangioma associated with transient thrombocytopenia and coagulopathy: a case series. Br J Dermatol. 2008;158(6):1363–1370. doi: 10.1111/j.1365-2133.2008.08546.x.
    1. Dompmartin A, Acher A, Thibon P, Tourbach S, Hermans C, Deneys V, et al. Association of localized intravascular coagulopathy with venous malformations. Arch Dermatol. 2008;144(7):873–877. doi: 10.1001/archderm.144.7.873.
    1. Dompmartin A, Vikkula M, Boon LM. Venous malformation: update on aetiopathogenesis, diagnosis and management. Phlebology. 2010;25(5):224–235. doi: 10.1258/phleb.2009.009041.
    1. Boland JM, Tazelaar HD, Colby TV, Leslie KO, Hartman TE, Yi ES. Diffuse pulmonary lymphatic disease presenting as interstitial lung disease in adulthood: report of 3 cases. Am J Surg Pathol. 2012;36(10):1548–1554. doi: 10.1097/PAS.0b013e31825eae67.
    1. Croteau SE, Kozakewich HP, Perez-Atayde AR, Fishman SJ, Alomari AI, Chaudry G, et al. Kaposiform lymphangiomatosis: a distinct aggressive lymphatic anomaly. J Pediatr. 2014;164(2):383–388. doi: 10.1016/j.jpeds.2013.10.013.
    1. Safi F, Gupta A, Adams D, Anandan V, McCormack FX, Assaly R. Kaposiform lymphangiomatosis, a newly characterized vascular anomaly presenting with hemoptysis in an adult woman. Ann Am Thorac Soc. 2014;11(1):92–95. doi: 10.1513/AnnalsATS.201308-287BC.
    1. Ji Y, Chen S, Peng S, Xia C, Li L. Kaposiform lymphangiomatosis and kaposiform hemangioendothelioma: similarities and differences. Orphanet J Rare Dis. 2019;14(1):165. doi: 10.1186/s13023-019-1147-9.
    1. Kato H, Ozeki M, Fukao T, Matsuo M. MR imaging findings of vertebral involvement in Gorham-stout disease, generalized lymphatic anomaly, and kaposiform lymphangiomatosis. Jpn J Radiol. 2017;35(10):606–612. doi: 10.1007/s11604-017-0674-3.
    1. Barclay SF, Inman KW, Luks VL, McIntyre JB, Al-Ibraheemi A, Church AJ, et al. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis. Genet Med. 2019;21(7):1517–1524. doi: 10.1038/s41436-018-0390-0.
    1. Tower RL. Kaposiform haemangioendothelioma: new insights and old problems. Br J Dermatol. 2018;179(2):253–254.
    1. Freixo C, Ferreira V, Martins J, Almeida R, Caldeira D, Rosa M, et al. Efficacy and safety of sirolimus in the treatment of vascular anomalies: a systematic review. J Vasc Surg. 2019. 10.1016/j.jvs.2019.06.217.
    1. Haisley-Royster C, Enjolras O, Frieden IJ, Garzon M, Lee M, Oranje A, et al. Kasabach-Merritt phenomenon: a retrospective study of treatment with vincristine. J Pediatr Hematol Oncol. 2002;24(6):459–462. doi: 10.1097/00043426-200208000-00010.
    1. Fahrtash F, McCahon E, Arbuckle S. Successful treatment of Kaposiform Hemangioendothelioma and tufted Angioma with vincristine. J Pediatr Hematol Oncol. 2010;32(6):506–510. doi: 10.1097/MPH.0b013e3181e001a9.
    1. Wang Z, Li K, Yao W, Dong K, Xiao X, Zheng S. Steroid-resistant kaposiform hemangioendothelioma: a retrospective study of 37 patients treated with vincristine and long-term follow-up. Pediatr Blood Cancer. 2015;62(4):577–580. doi: 10.1002/pbc.25296.
    1. Liu X, Li J, Qu X, Yan W, Zhang L, Zhang S, et al. Clinical outcomes for systemic corticosteroids versus vincristine in treating Kaposiform Hemangioendothelioma and tufted Angioma. Medicine. 2016;95(20):e3431. doi: 10.1097/MD.0000000000003431.
    1. Tlougan BE, Lee MT, Drolet BA, Frieden IJ, Adams DM, Garzon MC. Medical Management of Tumors Associated with Kasabach-Merritt Phenomenon. J Pediatr Hematol Oncol. 2013;35(8):618–622. doi: 10.1097/MPH.0b013e318298ae9e.
    1. Peng S, Yang K, Xu Z, Chen S, Ji Y. Vincristine and sirolimus in the treatment of kaposiform haemangioendothelioma. J Paediatr Child H. 2019;55(9):1119–1124. doi: 10.1111/jpc.14370.
    1. Tan X, Zhang J, Zhou S, Liu Z, Zhang T, Xia J. Successful management of steroid-resistant vascular tumors associated with the Kasabach-Merritt phenomenon using sirolimus. J Dermatol. 2018;45(5):580–583. doi: 10.1111/1346-8138.14231.
    1. Kai L, Wang Z, Yao W, Dong K, Xiao X. Sirolimus, a promising treatment for refractory Kaposiform hemangioendothelioma. J Cancer Res Clin. 2014;140(3):471–476. doi: 10.1007/s00432-013-1549-3.
    1. Lopez V, Marti N, Pereda C, Martin JM, Ramon D, Mayordomo E, et al. Successful management of Kaposiform hemangioendothelioma with Kasabach-Merritt phenomenon using vincristine and ticlopidine. Pediatr Dermatol. 2009;26(3):365–366. doi: 10.1111/j.1525-1470.2009.00923.x.
    1. Liu XH, Li JY, Qu XH, Yan WL, Zhang L, Yang C, et al. Treatment of kaposiform hemangioendothelioma and tufted angioma. Int J Cancer. 2016;139(7):1658–1666. doi: 10.1002/ijc.30216.
    1. George ME, Sharma V, Jacobson J, Simon S, Nopper AJ. Adverse effects of systemic Glucocorticosteroid therapy in infants with Hemangiomas. Arch Dermatol. 2004;140(8):963–969. doi: 10.1001/archderm.140.8.963.
    1. Ji Y, Chen S, Xiang B, Li K, Xu Z, Yao W, et al. Sirolimus for the treatment of progressive kaposiform hemangioendothelioma: a multicenter retrospective study. Int J Cancer. 2017;141(4):848–855. doi: 10.1002/ijc.30775.
    1. Boccara O, Puzenat E, Proust S, Leblanc T, Lasne D, Hadj-Rabia S, et al. The effects of sirolimus on Kasabach-Merritt phenomenon coagulopathy. British J Dermatol. 2018;178(2):e114–e116. doi: 10.1111/bjd.15883.
    1. Zhang G, Chen H, Gao Y, Liu Y, Wang J, Liu XY. Sirolimus for treatment of Kaposiform haemangioendothelioma with Kasabach-Merritt phenomenon: a retrospective cohort study. Brit J Dermatol. 2018;178(5):1213–1214. doi: 10.1111/bjd.16400.
    1. Triana P, Dore M, Cerezo V, Cervantes M, Sánchez A, Ferrero M, et al. Sirolimus in the treatment of vascular anomalies. Eur J Pediatr Surg. 2017;27(01):086–090.
    1. Tasani M, Ancliff P, Glover M. Sirolimus therapy for children with problematic kaposiform haemangioendothelioma and tufted angioma. Brit J Dermatol. 2017;177(6):e344–e346. doi: 10.1111/bjd.15640.
    1. Wang H, Duan Y, Gao Y, Guo X. Sirolimus for vincristine-resistant Kasabach-Merritt phenomenon: report of eight patients. Pediatr Dermatol. 2017;34(3):261–265. doi: 10.1111/pde.13077.
    1. Adams DM, Trenor CC, Hammill AM, Vinks AA, Patel MN, Chaudry G, et al. Efficacy and safety of Sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257. doi: 10.1542/peds.2015-3257.
    1. Nadal M, Giraudeau B, Tavernier E, Jonville-Bera A, Lorette G, Maruani A. Efficacy and safety of mammalian target of Rapamycin inhibitors in vascular anomalies: a systematic review. Acta Dermato Venereologica. 2016;96(4):448–452. doi: 10.2340/00015555-2300.
    1. Wang Z, Li K, Dong K, Xiao X, Zheng S. Successful treatment of Kasabach-Merritt phenomenon arising from Kaposiform Hemangioendothelioma by Sirolimus. J Pediatr Hematol Oncol. 2015;37(1):72–73. doi: 10.1097/MPH.0000000000000068.
    1. Lackner H, Karastaneva A, Schwinger W, Benesch M, Sovinz P, Seidel M, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174(12):1579–1584. doi: 10.1007/s00431-015-2572-y.
    1. Blatt J, Stavas J, Moats-Staats B, Woosley J, Morrell DS. Treatment of childhood kaposiform hemangioendothelioma with sirolimus. Pediatr Blood Cancer. 2010;55(7):1396–1398. doi: 10.1002/pbc.22766.
    1. Russell TB, Rinker EK, Dillingham CS, Givner LB, McLean TW. Pneumocystis Jirovecii pneumonia during Sirolimus therapy for Kaposiform Hemangioendothelioma. Pediatrics. 2018;141(Suppl 5):S421. doi: 10.1542/peds.2017-1044.
    1. Ying H, Qiao C, Yang X, Lin X. A case report of 2 Sirolimus-related deaths among infants with Kaposiform Hemangioendotheliomas. Pediatrics. 2018;141(Suppl 5):S425–S429. doi: 10.1542/peds.2016-2919.
    1. Mariani LG, Schmitt IR, Garcia CD, Kiszewski AE. Low dose sirolimus treatment for refractory tufted angioma and congenital kaposiform hemangioendothelioma, both with Kasabach-Merritt phenomenon. Pediatr Blood Cancer. 2019;66(8):e27810. doi: 10.1002/pbc.27810.
    1. Zhu J, Wu J, Frizell E, Liu SL, Bashey R, Rubin R, et al. Rapamycin inhibits hepatic stellate cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis. Gastroenterology. 1999;117(5):1198–1204. doi: 10.1016/S0016-5085(99)70406-3.
    1. Wu MJ, Wen MC, Chiu YT, Chiou YY, Shu KH, Tang MJ. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int. 2006;69(11):2029–2036. doi: 10.1038/sj.ki.5000161.
    1. Burleigh A, Kanigsberg N, Lam JM. Topical rapamycin (sirolimus) for the treatment of uncomplicated tufted angiomas in two children and review of the literature. Pediatr Dermatol. 2018;35(5):e286–e290. doi: 10.1111/pde.13596.
    1. Zhang X, Yang K, Chen S, Ji Y. Tacrolimus ointment for the treatment of superficial kaposiform hemangioendothelioma and tufted angioma. J Dermatol. 2019;46(10):898–901. doi: 10.1111/1346-8138.15031.
    1. Paller AS, Eichenfield LF, Kirsner RS, Shull T, Jaracz E, Simpson EL. Three times weekly tacrolimus ointment reduces relapse in stabilized atopic dermatitis: a new paradigm for use. Pediatrics. 2008;122(6):e1210–e1218. doi: 10.1542/peds.2008-1343.
    1. Moimeaux V, Taieb A, Legrain V, Meraud JP, Jimenez M, Choussat A, et al. Aspirin-ticlopidin in Kasabach-Merritt syndrome. Lancet. 1992;340(8810):55. doi: 10.1016/0140-6736(92)92470-Z.
    1. Wu HW, Wang X, Zhang L, Zhao HG, Wang YA, Su LX, et al. Interferon-alpha therapy for refractory kaposiform hemangioendothelioma: a single-center experience. Sci Rep. 2016;6:36261. doi: 10.1038/srep36261.
    1. Hermans DJ, van Beynum IM, van der Vijver RJ, Kool LJ, de Blaauw I, van der Vleuten CJ. Kaposiform hemangioendothelioma with Kasabach-Merritt syndrome: a new indication for propranolol treatment. J Pediatr Hematol Oncol. 2011;33(4):e171–e173. doi: 10.1097/MPH.0b013e3182152e4e.
    1. Chiu YE, Drolet BA, Blei F, Carcao M, Fangusaro J, Kelly ME, et al. Variable response to propranolol treatment of kaposiform hemangioendothelioma, tufted angioma, and Kasabach-Merritt phenomenon. Pediatr Blood Cancer. 2012;59(5):934–938. doi: 10.1002/pbc.24103.
    1. Filippi L, Tamburini A, Berti E, Perrone A, Defilippi C, Favre C, et al. Successful propranolol treatment of a Kaposiform Hemangioendothelioma apparently resistant to propranolol. Pediatr Blood Cancer. 2016;63(7):1290–1292. doi: 10.1002/pbc.25979.
    1. Barlow CF, Priebe CJ, Mulliken JB, Barnes PD, Mac DD, Folkman J, et al. Spastic diplegia as a complication of interferon Alfa-2a treatment of hemangiomas of infancy. J Pediatr. 1998;132(3 Pt 1):527–530. doi: 10.1016/S0022-3476(98)70034-4.
    1. Wang P, Zhou W, Tao L, Zhao N, Chen XW. Clinical analysis of Kasabach-Merritt syndrome in 17 neonates. BMC Pediatr. 2014;14:146. doi: 10.1186/1471-2431-14-146.

Source: PubMed

3
Předplatit