CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: A potential imaging biomarker for treatment response and prognosis

Choong Guen Chee, Young Hoon Kim, Kyoung Ho Lee, Yoon Jin Lee, Ji Hoon Park, Hye Seung Lee, Soyeon Ahn, Bohyoung Kim, Choong Guen Chee, Young Hoon Kim, Kyoung Ho Lee, Yoon Jin Lee, Ji Hoon Park, Hye Seung Lee, Soyeon Ahn, Bohyoung Kim

Abstract

Purpose: To evaluate the association of computed tomography (CT) texture features of locally advanced rectal cancer with neoadjuvant chemoradiotherapy (CRT) response and disease-free survival (DFS).

Methods and findings: The institutional review board approved this retrospective study. 95 patients who received neoadjuvant CRT, followed by surgery, for locally advanced rectal cancer were included. Texture features (entropy, uniformity, kurtosis, skewness, and standard deviation) were assessed in pretreatment CT images and obtained without filtration and with Laplacian of Gaussian spatial filter of various filter values (1.0, 1.5, 2.0, and 2.5). Dworak pathologic grading was used for treatment response assessment. Independent t-test was used to compare each texture feature between the treatment responder and non-responder groups. DFS was assessed with Kaplan-Meier method, and differences were compared with log-rank test. Cox proportional hazards models were constructed to predict prognosis based on stage, age, and each texture feature. Treatment responders (n = 32) showed significantly lower entropy, higher uniformity, and lower standard deviation in no filtration, fine (1.0), and medium (1.5) filter values. Entropy, uniformity, and standard deviation without filtration showed significant difference in DFS in Kaplan-Meier analysis (P = 0.015, 0.025, and 0.038). Homogeneous texture features (≤ 6.7 for entropy, > 0.0118 for uniformity, and ≤ 28.06 for standard deviation) were associated with higher DFS. Entropy, uniformity, and standard deviation were independent texture features in predicting DFS (P = 0.017, 0.03, and 0.036).

Conclusions: Homogeneous texture features are associated with better neoadjuvant CRT response and higher DFS in patients with locally advanced rectal cancer.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Patient flow diagram.
Fig 1. Patient flow diagram.
Fig 2. Texture analysis.
Fig 2. Texture analysis.
(a) Manually outlining and filtering out the pixels with attenuation under -50 HU in locally advanced rectal cancer in 76-year-old man. (b) Corresponding images in the same patient applying LoG filters with fine, medium, and coarse filter values.
Fig 3. Kaplan–Meier curves according to texture…
Fig 3. Kaplan–Meier curves according to texture features.
Kaplan-Meier curves without filtration showed a significant difference in DFS for (a) entropy, (b) uniformity, and (c) standard deviation.

References

    1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: .
    1. National cancer information center. Cancer facts & figures 2012 in the republic of korea.
    1. National Comprehensive Cancer Network. Rectal cancer (Version 2.2015).
    1. Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M, Fietkau R, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol. 2005;23(34):8688–96. doi: .
    1. Chau I, Brown G, Cunningham D, Tait D, Wotherspoon A, Norman AR, et al. Neoadjuvant capecitabine and oxaliplatin followed by synchronous chemoradiation and total mesorectal excision in magnetic resonance imaging-defined poor-risk rectal cancer. J Clin Oncol. 2006;24(4):668–74. doi: .
    1. Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U Jr., Silva e Sousa AH Jr., et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240(4):711–7; discussion 7–8. ; PubMed Central PMCID: PMC1356472. doi:
    1. Martin ST, Heneghan HM, Winter DC. Systematic review and meta-analysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br J Surg. 2012;99(7):918–28. doi: .
    1. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30(16):1926–33. doi: .
    1. Park IJ, You YN, Agarwal A, Skibber JM, Rodriguez-Bigas MA, Eng C, et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol. 2012;30(15):1770–6. doi: ; PubMed Central PMCID: PMC3383178.
    1. Maas M, Beets-Tan RG, Lambregts DM, Lammering G, Nelemans PJ, Engelen SM, et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol. 2011;29(35):4633–40. doi: .
    1. Pucciarelli S, De Paoli A, Guerrieri M, La Torre G, Maretto I, De Marchi F, et al. Local excision after preoperative chemoradiotherapy for rectal cancer: results of a multicenter phase II clinical trial. Dis Colon Rectum. 2013;56(12):1349–56. doi: .
    1. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3(6):573–89. doi: ; PubMed Central PMCID: PMC3505569.
    1. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology. 2013;266(1):177–84. doi: .
    1. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22(4):796–802. doi: .
    1. Yip C, Landau D, Kozarski R, Ganeshan B, Thomas R, Michaelidou A, et al. Primary esophageal cancer: heterogeneity as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy. Radiology. 2014;270(1):141–8. doi: .
    1. Zhang H, Graham CM, Elci O, Griswold ME, Zhang X, Khan MA, et al. Locally advanced squamous cell carcinoma of the head and neck: CT texture and histogram analysis allow independent prediction of overall survival in patients treated with induction chemotherapy. Radiology. 2013;269(3):801–9. doi: .
    1. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261(1):165–71. doi: .
    1. Lubner MG, Stabo N, Lubner SJ, Del Rio AM, Song C, Halberg RB, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging. 2015;40(7):2331–7. doi: .
    1. Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR. Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology. 2009;250(2):444–52. doi: .
    1. Taylor FG, Quirke P, Heald RJ, Moran B, Blomqvist L, Swift I, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study. Ann Surg. 2011;253(4):711–9. doi: .
    1. Kim SH, Lee JM, Hong SH, Kim GH, Lee JY, Han JK, et al. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology. 2009;253(1):116–25. doi: .
    1. DeVries AF, Piringer G, Kremser C, Judmaier W, Saely CH, Lukas P, et al. Pretreatment evaluation of microcirculation by dynamic contrast-enhanced magnetic resonance imaging predicts survival in primary rectal cancer patients. Int J Radiat Oncol Biol Phys. 2014;90(5):1161–7. doi: .
    1. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4. doi: .
    1. Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis. 1997;12(1):19–23. .
    1. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 2012;67(2):157–64. doi: .
    1. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56(19):4509–15. .
    1. Hockel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, et al. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol. 1993;26(1):45–50. .
    1. Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol. 2011;35(6):853–60. doi: .
    1. Teicher BA. Physiologic mechanisms of therapeutic resistance. Blood flow and hypoxia. Hematol Oncol Clin North Am. 1995;9(2):475–506. .
    1. Movsas B, Chapman JD, Greenberg RE, Hanlon AL, Horwitz EM, Pinover WH, et al. Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age: an Eppendorf pO(2) study. Cancer. 2000;89(9):2018–24. .
    1. Harrison LB, Chadha M, Hill RJ, Hu K, Shasha D. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist. 2002;7(6):492–508. .
    1. Bezy-Wendling J, Kretowski M, Rolland Y, Le Bidon W. Toward a better understanding of texture in vascular CT scan simulated images. IEEE Trans Biomed Eng. 2001;48(1):120–4. doi: .
    1. Ng F, Kozarski R, Ganeshan B, Goh V. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol. 2013;82(2):342–8. doi: .

Source: PubMed

3
Předplatit