Metabolic agents that enhance ATP can improve cognitive functioning: a review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine

Lauren Owen, Sandra I Sunram-Lea, Lauren Owen, Sandra I Sunram-Lea

Abstract

Over the past four or five decades, there has been increasing interest in the neurochemical regulation of cognition. This field received considerable attention in the 1980s, with the identification of possible cognition enhancing agents or "smart drugs". Even though many of the optimistic claims for some agents have proven premature, evidence suggests that several metabolic agents may prove to be effective in improving and preserving cognitive performance and may lead to better cognitive aging through the lifespan. Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. There are a number of agents with the potential to improve metabolic activity. Research is now beginning to identify these various agents and delineate their potential usefulness for improving cognition in health and disease. This review provides a brief overview of the metabolic agents glucose, oxygen, pyruvate, creatine, and L-carnitine and their beneficial effects on cognitive function. These agents are directly responsible for generating ATP (adenosine triphosphate) the main cellular currency of energy. The brain is the most metabolically active organ in the body and as such is particularly vulnerable to disruption of energy resources. Therefore interventions that sustain adenosine triphosphate (ATP) levels may have importance for improving neuronal dysfunction and loss. Moreover, recently, it has been observed that environmental conditions and diet can affect transgenerational gene expression via epigenetic mechanisms. Metabolic agents might play a role in regulation of nutritional epigenetic effects. In summary, the reviewed metabolic agents represent a promising strategy for improving cognitive function and possibly slowing or preventing cognitive decline.

Keywords: L-carnitine; ageing; cognition; creatine; glucose; metabolic agents; oxygen; pyruvate.

References

    1. Klein A., Ferrante R. The neuroprotective role of creatine. In: Salomons G.S., Wyss M., editors. Creatine and Creatine Kinase in Health and Disease. Vol. 46. Springer; Berlin, Germany: 2007. pp. 205–243.
    1. Hagen T., Ingersoll R., Wehr C., Lykkesfeldt J., Vinarsky V., Bartholomew J., Song M., Ames B. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc. Natl. Acad. Sci. USA. 1998;95:9562–9566.
    1. Ames B., Shigenaga M., Hagen T. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922.
    1. Ames B., Shigenaga M., Hagen T. Mitochondrial decay in aging. Biochim. Biophys. Acta Mol. Basis Dis. 1995;1271:165–170.
    1. Ames B., Liu J., Atamna H., Hagen T. Delaying the mitochondrial decay of aging in the brain. Clin. Neurosci. Res. 2003;2:331–338.
    1. Raz N., Lindenberger U., Rodrigue K., Kennedy K., Head D., Williamson A., Dahle C., Gerstorf D., Acker J. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex. 2005;15:1676–1689.
    1. Lin M., Beal M. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795.
    1. Drevets W. Prefrontal cortical—amygdalar metabolism in major depression. Ann. N. Y. Acad. Sci. 1999;877:614–637.
    1. Prabakaran S., Swatton J., Ryan M., Huffaker S., Huang J., Griffin J., Wayland M., Freeman T., Dudbridge F., Lilley K., et al. Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry. 2004;9:684–697.
    1. Kato T., Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2000;2:180–190.
    1. Sieber F.E., Derrer S.A., Saudek C.D., Traystman R.J. Effect of hypoglycemia on cerebral metabolism and carbon dioxide responsivity. Am. J. Physiol. 1989;256:H697–H706.
    1. Sieber F.E., Traystman R.J. Special issues: Glucose and the brain. Crit. Care Med. 1992;20:104–114.
    1. Purves W.K., Sadava D., Orians G.H. Life: The Science of Biology: Plants and Animals. Vol. 3 W. H. Freeman; New York, NY, USA: 2004.
    1. Lehninger A., Nelson D., Cox M. Lehninger Principles of Biochemistry. W. H. Freeman; New York, NY, USA: 2005.
    1. Wiesinger H., Hamprecht B., Dringen R. Metabolic pathways for glucose in astrocytes. Glia. 1997;21:22–34.
    1. Kauppinen R.A., McMahon H.T., Nicholls D.G. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: Possible relevance to hyoglycaemia and anoxia. Neuroscience. 1988;27:175–182.
    1. Dringen R., Hamprecht B. Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures. J. Neurochem. 1992;58:511–517.
    1. Hertz L., Yager J., Juurlink B. Astrocyte survival in the absence of exogenous substrate: Comparison of immature and mature cells. Int. J. Dev. Neurosci. 1995;13:523–527.
    1. Gibbs M.E., Anderson D.G., Hertz L. Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia. 2006;54:214–222.
    1. Guyton A.C., Hall J.E. Textbook of Medical Physiology. W. B. Saunders; London, UK: 1981.
    1. Love R.J., Webb W.G., Kirshner H.S., Halliburton D.B., Gross P. Neurology for the Speech-Language Pathologist. Butterworth-Heinemann; Oxford, UK: 1996.
    1. McIlwain H. Thiols and the control of carbohydrate metabolism in cerebral tissues. Biochem. J. 1959;71:281–285.
    1. Gold P.E. Glucose modulation of memory storage processing. Behav. Neural Biol. 1986;45:342–349.
    1. Lee M.K., Graham S.N., Gold P.E. Memory enhancement with posttraining intraventricular glucose injections in rats. Behav. Neurosci. 1988;102:591–595.
    1. Kopf S.R., Baratti C.M. Effects of posttraining administration of glucose on retention of a habituation response in mice: Participation of a central cholinergic mechanism. Neurobiol. Learn. Mem. 1996;65:253–260.
    1. Hall J.L., Gonder-Frederick L., Chewning W., Silveira J., Gold P. Glucose enhancement of performance of memory tests in young and aged humans. Neuropsychologia. 1989;27:1129–1138.
    1. Gonder-Frederick L., Hall J., Vogt J., Cox D., Green J., Gold P. Memory enhancement in elderly humans: Effects of glucose ingestion. Physiol. Behav. 1987;41:503–504.
    1. Craft S., Murphy C., Wemstrom J. Glucose effects on complex memory and nonmemory tasks: The influence of age, sex, and glucoregulatory response. Psychobiology. 1994;22:95–105.
    1. Messier C., Gagnon M., Knott V. Effect of glucose and peripheral glucose regulation on memory in the elderly. Neurobiol. Aging. 1997;18:297–304.
    1. Craft S., Zallen G., Baker L.D. Glucose and memory in mild senile dementia of the Alzheimer type. J. Clin. Exp. Neuropsychol. 1992;14:253–267.
    1. Manning C.A., Ragozzino M.E., Gold P.E. Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer’s type. Neurobiol. Aging. 1993;14:523–528.
    1. Manning C.A., Honn V.J., Stone W.S., Jane J.S., Gold P.E. Glucose effects on cognition in adults with Down’s syndrome. Neuropsychologia. 1998;12:479–484.
    1. Newcomer J.W., Craft S., Fucetola R., Moldin S.O., Selke G., Paras L., Miller R. Glucose-induced increase in memory performance in patients with schizophrenia. Schizophr. Bull. 1999;25:321–335.
    1. Fucetola R., Newcomer J.W., Craft S., Melson A.K. Age-and dose-dependent glucose-induced increases in memory and attention in schizophrenia. Psychiatry Res. 1999;88:1–13.
    1. Gradman T.J., Laws A., Thompson L.W., Reaven G.M. Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J. Am. Geriatr. Soc. 1993;41:1305–1312.
    1. Meneilly G.S., Cheung E., Tessier D., Yakura C., Tuokko H. The effect of improved glycemic control on cognitive functions in the elderly patient with diabetes. J. Gerontol. 1993;48:M117–M121.
    1. Gold P.E., Vogt J.A., Hall J.L. Glucose effects on memory: Behavioral and pharmacological characteristics. Behav. Neural Biol. 1986;46:145–155.
    1. Sunram-Lea S., Owen L., Finnegan Y., Hu H. Dose-response investigation into glucose facilitation of memory performance and mood in healthy young adults. J. Psychopharmacol. 2010
    1. Hoyland A., Lawton C., Dye L. Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neurosci. Biobehav. Rev. 2008;32:72–85.
    1. Sünram-Lea S., Foster J., Durlach P., Perez C. Glucose facilitation of cognitive performance in healthy young adults: Examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels. Psychopharmacology. 2001;157:46–54.
    1. Kennedy D., Scholey A. Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology. 2000;149:63–71.
    1. Scholey A., Harper S., Kennedy D. Cognitive demand and blood glucose. Physiol. Behav. 2001;73:585–592.
    1. Sünram-Lea S., Foster J., Durlach P., Perez C. Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology. 2002;160:387–397.
    1. McNay E.C., Fries T.M., Gold P.E. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl. Acad. Sci. USA. 2000;97:2881–2885.
    1. Scholey A.B., Harper S., Kennedy D.O. Cognitive demand and blood glucose. Physiol. Behav. 2001;73:585–592.
    1. Volpe B., Hirst W. Amnesia following the rupture and repair of an anterior communicating artery aneurysm. J. Neurol. Neurosurg. Psychiatry. 1983;46:704–709.
    1. Kuwert T., Hömberg V., Steinmetz H., Unverhau S., Langen K.J., Herzog H., Feinendegen L. Posthypoxic amnesia: Regional cerebral glucose consumption measured by positron emission tomography. J. Neurol. Sci. 1993;118:10–16.
    1. De la Torre J., Fortin T., Park G., Pappas B., Richard M. Brain blood flow restoration “rescues” chronically damaged rat CA1 neurons. Brain Res. 1993;623:6–15.
    1. Crowley J., Wesensten N., Kamimori G., Devine J., Iwanyk E., Balkin T. Effect of high terrestrial altitude and supplemental oxygen on human performance and mood. Aviat. Space Environ. Med. 1992;63:696–701.
    1. Weaver L., Hopkins R., Chan K., Churchill S., Elliott C., Clemmer T., Orme J., Jr., Thomas F., Morris A. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med. 2002;347:1057–1067.
    1. Weiskopf R., Feiner J., Hopf H., Viele M., Watson J., Kramer J., Ho R., Toy P. Oxygen reverses deficits of cognitive function and memory and increased heart rate induced by acute severe isovolemic anemia. Anesthesiology. 2002;96:871–877.
    1. Eustache F., Rioux P., Desgranges B., Marchal G., Petit-Taboué M.C., Dary M., Lechevalier B., Baron J.C. Healthy aging, memory subsystems and regional cerebral oxygen consumption. Neuropsychologia. 1995;33:867–887.
    1. Strehler B. Fundamental mechanisms of neuronal aging. In: Sarkander H.-I., Cervós-Navarro J., editors. Brain Aging: Neuropathology and Neuropharmacology, Aging. Vol. 21. Raven Press; New York, NY, USA: 1983. pp. 75–91.
    1. Naritomi H., Meyer J.S., Sakai F., Yamaguchi F., Shaw T. Effects of advancing age on regional cerebral blood flow: Studies in normal subjects and subjects with risk factors for atherothrombotic stroke. Arch. Neurol. 1979;36:410–416.
    1. Davis S.M., Ackerman R.H., Correia J.A., Alpert N.M., Chang J., Buonanno F., Kelley R.E., Rosner B., Taveras J.M. Cerebral blood flow and cerebrovascular CO2 reactivity in stroke age normal controls. Neurology. 1983;33:391–399.
    1. Lassen N.A., Ingvar D.H. Blood flow studies in the aging normal brain and in senile dementia. In: Amaducci L., Davison A.N., Antuono P., editors. Aging of the Brain and Dementia. Raven Press; New York, NY, USA: 1980. pp. 91–98.
    1. Rowan J., McAlpine C., Matheson M., Patterson J. CBF, vasomotor tone, and intelligence rating in nonagenarians. J. Cereb. Blood Flow Metab. 1981;1:S481–S482.
    1. Edwards A., Hart G. Hyperbaric oxygenation and the cognitive functioning of the aged. J. Am. Geriatr. Soc. 1974;22:376–379.
    1. Raskin A., Gershon S., Crook T., Sathananthan G., Ferris S. The effects of hyperbaric and normobaric oxygen on cognitive impairment in the elderly. Arch. Gen. Psychiatry. 1978;35:50–56.
    1. Walker B.B., Sandman C.A. Human visual evoked responses are related to heart rate. J. Comp. Physiol. Psychol. 1979;93:717–729.
    1. Moss M., Scholey A., Wesnes K. Oxygen administration selectively enhances cognitive performance in healthy young adults: A placebo-controlled double-blind crossover study. Psychopharmacology. 1998;138:27–33.
    1. Scholey A., Moss M., Wesnes K. Oxygen and cognitive performance: The temporal relationship between hyperoxia and enhanced memory. Psychopharmacology. 1998;140:123–126.
    1. Moss M., Scholey A. Oxygen administration enhances memory formation in healthy young adults. Psychopharmacology. 1996;124:255–260.
    1. Scholey A., Moss M., Neave N., Wesnes K. Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiol. Behav. 1999;67:783–789. doi: 10.1016/S0031-9384(99)00183-3.
    1. Chung S., Lee H., Choi M., Tack G., Lee B., Yi J., Kim H., Lee B. A study on the effects of 40% oxygen on addition task performance in three levels of difficulty and physiological signals. Int. J. Neurosci. 2008;118:905–916.
    1. Winder R., Borrill J. Fuels for memory: The role of oxygen and glucose in memory enhancement. Psychopharmacology. 1998;136:349–356.
    1. Yerkes R.M., Dodson J.D. The relation of strength of stimulus to rapidity of habit formation. J. Comp. Neurol. Psychol. 1908;18:459–482.
    1. Gladden L. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004;558:5–30.
    1. Lee J., Kim Y., Koh J. Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci. 2001;21:RC171:1–RC171:6.
    1. Wieloch T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science. 1985;230:681–683.
    1. Ying W., Chen Y., Alano C., Swanson R. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J. Cereb. Blood Flow Metab. 2002;22:774–779.
    1. Suh S., Aoyama K., Matsumori Y., Liu J., Swanson R. Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes. 2005;54:1452–1458.
    1. Kirino T. Delayed neuronal death. Neuropathology. 2000;20:S95–S97.
    1. Yu Y.M., Kim J.B., Lee K.W., Kim S.Y., Han P.L., Lee J.K. Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window. Stroke. 2005;36:2238–2243.
    1. Ragozzino M.E., Hellems K., Lennartz R.C., Gold P.E. Pyruvate infusions into the septal area attenuate spontaneous alternation impairments induced by intraseptal morphine injections. Behav. Neurosci. 1995;109:1074–1080.
    1. Krebs D.L., Parent M.B. Hippocampal infusions of pyruvate reverse the memory-impairing effects of septal muscimol infusions. Eur. J. Pharmacol. 2005;520:91–99.
    1. Izumi Y., Zorumski C.F. Involvement of nitric oxide in low glucose-mediated inhibition of hippocampal long-term potentiation. Synapse. 1997;25:258–262.
    1. Izumi Y., Katsuki H., Zorumski C.F. Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 1997;232:17–20.
    1. Hoyer S. Abnormalities in brain glucose utilization and its impact on cellular and molecular mechanisms in sporadic dementia of Alzheimer type. Ann. N. Y. Acad. Sci. 1993;695:77–80.
    1. Parnetti L., Gaiti A., Polidori M., Brunetti M., Palumbo B., Chionne F., Cadini D., Cecchetti R., Senin U. Increased cerebrospinal fluid pyruvate levels in Alzheimer’s disease. Neurosci. Lett. 1995;199:231–233.
    1. Pugliese M., Carrasco J., Andrade C., Mas E., Mascort J., Mahy N. Severe cognitive impairment correlates with higher cerebrospinal fluid levels of lactate and pyruvate in a canine model of senile dementia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2005;29:603–610. doi: 10.1016/j.pnpbp.2005.01.017.
    1. Balsom P., Soderlund K., Sjodin B., Ekblom B. Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol. Scand. 1995;154:303–310.
    1. Walker J. Creatine: Biosynthesis, regulation, and function (Chick embryo experiments, dietary aspects) Adv. Enzymol. Relat. Areas Mol. Biol. 1979;50:177–242.
    1. Snow R.J., Murphy R.M. Factors influencing creatine loading into human skeletal muscle. Exerc. Sport Sci. Rev. 2003;31:154–158.
    1. Kamber M., Koster M., Kreis R., Walker G., Boesch C., Hoppler H. Creatine supplementation—part I: Performance, clinical chemistry, and muscle volume. Med. Sci. Sports Exerc. 1999;31:1763–1769. doi: 10.1097/00005768-199912000-00011.
    1. Persky A.M., Brazeau G.A., Hochhaus G. Pharmacokinetics of the dietary supplement creatine. Clin. Pharmacokinet. 2003;42:557–574.
    1. Conway M., Clark J. Creatine and Creatine Phosphate: Scientific and Clinical Perspectives. Academic Press; San Diego, CA, USA: 1996.
    1. Rango M., Castelli A., Scarlato G. Energetics of 3.5 s neural activation in humans: A 31P MR spectroscopy study. Magn. Reson. Med. 1997;38:878–883. doi: 10.1002/mrm.1910380605.
    1. Sappey-Marinier D., Calabrese G., Fein G., Hugg J., Biggins C., Weiner M. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 1992;12:584–592.
    1. Dechent P., Pouwels P., Wilken B., Hanefeld F., Frahm J. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. 1999;277:698–704.
    1. Lyoo I., Kong S., Sung S., Hirashima F., Parow A., Hennen J., Cohen B., Renshaw P. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res. Neuroimaging. 2003;123:87–100.
    1. Jost C., Van der Zee C., Oerlemans F., Verheij M., Streijger F., Fransen J., Heerschap A., Cools A., Wieringa B. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Eur. J. Neurosci. 2002;15:1692–1706.
    1. Wilken B., Ramirez J., Probst I., Richter D., Hanefeld F. Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr. Res. 1998;43:8–14.
    1. Balestrino M., Rebaudo R., Lunardi G. Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: Dose-effect relationship. Brain Res. 1999;816:124–130.
    1. Holtzman D., Togliatti A., Khati I., Jensen F. Creatine increases survival and suppresses seizures in the hypoxic immature rat. Pediatr. Res. 1998;44:410–414.
    1. Sullivan P., Geiger J., Mattson M., Scheff S. Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 2000;48:723–729.
    1. Shear D., Haik K., Dunbar G. Creatine reduces 3-nitropropionic-acid-induced cognitive and motor abnormalities in rats. NeuroReport. 2000;11:1833–1837.
    1. Wyss M., Braissant O., Pischel I., Salomons G.S., Schulze A., Stockler S., Wallimann T. Creatine and creatine kinase in health and disease—A bright future ahead? In: Salomons G.S., Wyss M., editors. Creatine and Creatine Kinase in Health and Disease. Springer; Berlin, Germany: 2007. pp. 309–334.
    1. McMorris T., Harris R., Swain J., Corbett J., Collard K., Dyson R., Dye L., Hodgson C., Draper N. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology. 2006;185:93–103. doi: 10.1007/s00213-005-0269-z.
    1. McMorris T., Harris R., Howard A., Langridge G., Hall B., Corbett J., Dicks M., Hodgson C. Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior. Physiol. Behav. 2007;90:21–28. doi: 10.1016/j.physbeh.2006.08.024.
    1. Watanabe A., Kato N., Kato T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci. Res. 2002;42:279–285.
    1. Ling J., Kritikos M., Tiplady B. Cognitive effects of creatine ethyl ester supplementation. Behav. Pharmacol. 2009;20:673–679.
    1. Rawson E., Lieberman H., Walsh T., Zuber S., Harhart J., Matthews T. Creatine supplementation does not improve cognitive function in young adults. Physiol. Behav. 2008;95:130–134.
    1. Rae C., Digney A., McEwan S., Bates T. Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proc. R. Soc. B Biol. Sci. 2003;270:2147–2150. doi: 10.1098/rspb.2003.2492.
    1. McMorris T., Mielcarz G., Harris R., Swain J., Howard A. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2007;14:517–528.
    1. Laakso M., Hiltunen Y., Könönen M., Kivipelto M., Koivisto A., Hallikainen M., Soininen H. Decreased brain creatine levels in elderly apolipoprotein E 4 carriers. J. Neural Transm. 2003;110:267–275.
    1. Steiber A., Kerner J., Hoppel C. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol. Aspects Med. 2004;25:455–473. doi: 10.1016/j.mam.2004.06.006.
    1. Liedtke A., Nellis S., Whitesell L., Mahar C. Metabolic and mechanical effects using L- and D-carnitine in working swine hearts. Am. J. Physiol. 1982;243:H691–H697.
    1. Simon E. Fatty acid oxidation defects as a cause of neuromyopathic disease in infants and adults. Clin. Lab. 2005;51:289–306.
    1. Wasserman K., Whipp B. Excercise physiology in health and disease. Am. Rev. Respir. Dis. 1975;112:219–249.
    1. Mingrone G., Greco A., Capristo E., Benedetti G., Giancaterini A., Gaetano A., Gasbarrini G. L-Carnitine improves glucose disposal in type 2 diabetic patients. J. Am. Coll. Nutr. 1999;18:77–82.
    1. Nalecz K.A., Nalecz M.J. Carnitine—a known compound, a novel function in neural cells. Acta Neurobiol. Exp. (Wars.) 1996;56:597–609.
    1. Imperato A., Ramacci M., Angelucci L. Acetyl-L-carnitine enhances acetylcholine release in the striatum and hippocampus of awake freely moving rats. Neurosci. Lett. 1989;107:251–255.
    1. Furlong J. Acetyl-L-carnitine: Metabolism and applications in clinical practice. Altern. Med. Rev. 1996;1:85–93.
    1. Forloni G., Angeretti N., Smiroldo S. Neuroprotective activity of acetyl-L-carnitine: Studies in vitro. J. Neurosci. Res. 1994;37:92–96. doi: 10.1002/jnr.490370112.
    1. Ishii T., Shimpo Y., Matsuoka Y., Kinoshita K. Anti-apoptotic effect of acetyl-L-carnitine and L-carnitine in primary cultured neurons. Jpn. J. Pharmacol. 2000;83:119–124.
    1. Binienda Z.K. Neuroprotective effects of L-carnitine in induced mitochondrial dysfunction. Ann. N. Y. Acad. Sci. 2003;993:289–295.
    1. Ghirardi O., Vertechi M., Vesci L., Canta A., Nicolini G., Galbiati S., Ciogli C., Quattrini G., Pisanto C., Cundari S., Rigamonti L.M. Chemotherapy-induced allodinia: Neuroprotective effect of acetyl-L-carnitine. In Vivo. 2005;19:631–637.
    1. Lolic M.M., Fiskum G., Rosenthal R.E. Neuroprotective effects of acetyl-L-carnitine after stroke in rats. Ann. Emerg. Med. 1997;29:758–765.
    1. Rosenthal R.E., Williams R., Bogaert Y.E., Getson P.R., Fiskum G. Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-L-carnitine. Stroke. 1992;23:1312–1317.
    1. Parnetti L., Gaiti A., Mecocci P., Cadini D., Senin U. Pharmacokinetics of IV and oral acetyl-L-carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type. Eur. J. Clin. Pharmacol. 1992;42:89–93.
    1. Montgomery S., Thal L., Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int. Clin. Psychopharmacol. 2003;18:61–71. doi: 10.1097/00004850-200303000-00001.
    1. Malaguarnera M., Cammalleri L., Gargante M., Vacante M., Colonna V., Motta M. L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. Am. J. Clin. Nutr. 2007;86:1738–1744.
    1. Junien C., Nathanielsz P. Report on the IASO Stock Conference 2006: Early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes. Obes. Rev. 2007;8:487–502.
    1. Fraga M.F., Ballestar E., Paz M.F., Ropero S., Setien F., Ballestar M.L., Heine-Suñer D., Cigudosa J.C., Urioste M., Benitez J. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA. 2005;102:10604–10609.
    1. Fraga M.F., Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23:413–418.
    1. Christensen B.C., Houseman E.A., Marsit C.J., Zheng S., Wrensch M.R., Wiemels J.L., Nelson H.H., Karagas M.R., Padbury J.F., Bueno R., et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5:e1000602.
    1. Lomba A., Milagro F.I., García-Díaz D.F., Marti A., Campión J., Martínez J.A. Obesity induced by a pair-fed high fat sucrose diet: Methylation and expression pattern of genes related to energy homeostasis. Lipids Health Dis. 2010;9:60.
    1. Whittle J.R., Powell M.J., Popov V.M., Shirley L.A., Wang C., Pestell R.G. Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation. Trends Endocrinol. Metab. 2007;18:356–364.

Source: PubMed

3
Předplatit