A Low-Cost, Point-of-Care Test for Confirmation of Nasogastric Tube Placement via Magnetic Field Tracking

Muneaki Miyasaka, Hao Li, Kon Voi Tay, Soo Jay Phee, Muneaki Miyasaka, Hao Li, Kon Voi Tay, Soo Jay Phee

Abstract

In this work, we aim to achieve low-cost real-time tracking for nasogastric tube (NGT) insertion by using a tracking method based on two magnetic sensors. Currently, some electromagnetic (EM) tracking systems used to detect the misinsertion of the NGT are commercially available. While the EM tracking systems can be advantageous over the other conventional methods to confirm the NGT position, their high costs are a factor hindering such systems from wider acceptance in the clinical community. In our approach, a pair of magnetic sensors are used to estimate the location of a permanent magnet embedded at the tip of the NGT. As the cost of the magnet and magnetic sensors is low, the total cost of the system can be less than one-tenth of that of the EM tracking systems. The experimental results exhibited that tracking can be achieved with a root mean square error (RMSE) of 2-5 mm and indicated a great potential for use as a point-of-care test for NGT insertion, to avoid misplacement into the lung and ensure correct placement in the stomach.

Keywords: magnetic sensors; real-time systems; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the two-sensor-based magnetic NGT tracking system.
Figure 2
Figure 2
Dimensions of the esophagus and airway where the NGT can enter.
Figure 3
Figure 3
Top: Illustration of the search regions, global search range, and instantaneous search range. Bottom: Definition of pitch and roll rotations and the origin of the magnet (Om).
Figure 4
Figure 4
(a) The first experimental setup to test the position tracking accuracy. (b) The tracking accuracy was evaluated at the 15 locations indicated in blue dots.
Figure 5
Figure 5
Mock-up esophagus and airway for the second experiment. The 14 FG NGT with a magnet is manually inserted into each path (esophagus, right airway, and left airway).
Figure 6
Figure 6
The average y and z position error and SD for L = (a) 80 mm and (b) 100 mm.
Figure 7
Figure 7
The average position error and SD along z-axis for (a) y position and (b) z-position. The results for both L = 80 and 100 mm are shown.
Figure 8
Figure 8
Tracking experiment with the dimensionally accurate mock-up esophagus and airway when L = 80 mm. Three trials of inserting the NGT into each path (the esophagus (black), right airway (blue), and left airway (red)) are shown in (ac). The inner diameter of the esophagus and trachea is represented by the yellow vertical dashed lines. The horizontal dashed line indicates the vertical location of the sensors.
Figure 9
Figure 9
Tracking experiment with the dimensionally accurate mock-up esophagus and airway when L = 100 mm. Three trials of inserting the NGT into each path (the esophagus (black), right airway (blue), and left airway (red)) are shown in (ac). The inner diameter of the esophagus and trachea is represented by the yellow vertical dashed lines. The horizontal dashed line indicates the vertical location of the sensors.

References

    1. Hodin R.A., Bordeianou L. Inpatient Placement and Management of Nasogastric and Nasoenteric tubes in Adults. UpToDate Inc.; Waltham, MA, USA: 2019.
    1. Smithard D., Barrett N.A., Hargroves D., Elliot S. Electromagnetic sensor-guided enteral access systems: A literature review. Dysphagia. 2015;30:275–285. doi: 10.1007/s00455-015-9607-4.
    1. Stayner J.L., Bhatnagar A., McGinn A.N., Fang J.C. Feeding tube placement: Errors and complications. Nutr. Clin. Pract. 2012;27:738–748. doi: 10.1177/0884533612462239.
    1. Metheny N.A., Meert K.L., Clouse R.E. Complications related to feeding tube placement. Curr. Opin. Gastroenterol. 2007;23:178–182. doi: 10.1097/MOG.0b013e3280287a0f.
    1. Agency N.P.S. Patient Safety Alert NPSA/2011/PSA002: Reducing the harm caused by misplaced nasogastric feeding tubes in adults, children and infants. [(accessed on 29 June 2021)];Support. Inf. 2011 Available online: .
    1. Peter S., Gill F. Development of a clinical practice guideline for testing nasogastric tube placement. J. Spec. Pediatr. Nurs. 2009;14:3–11. doi: 10.1111/j.1744-6155.2008.00161.x.
    1. Taylor S., Allan K., McWilliam H., Manara A., Brown J., Toher D., Rayner W. Confirming nasogastric tube position with electromagnetic tracking versus pH or X-ray and tube radio-opacity. Br. J. Nurs. 2014;23:352–358. doi: 10.12968/bjon.2014.23.7.352.
    1. Ackerman M., Mick D., Bianchi C., Chiodo V., Yeager C. The Effectiveness of the CORTRAK™ Device in Avoiding Lung Placement of Small Bore Enteral Feeding Tubes. Am. J. Crit. Care. 2004;13:253–276.
    1. NICE CORTRAK 2 Enteral Access System for Placing Nasoenteral Feeding Tubes. [(accessed on 21 April 2021)];2016 Available online: .
    1. Pham D., Aziz S.M. A real-time localization system for an endoscopic capsule using magnetic sensors. Sensors. 2014;14:20910–20929. doi: 10.3390/s141120910.
    1. Song S., Li B., Qiao W., Hu C., Ren H., Yu H., Zhang Q., Meng M.Q.H., Xu G. 6-D magnetic localization and orientation method for an annular magnet based on a closed-form analytical model. IEEE Trans. Magn. 2014;50:1–11. doi: 10.1109/TMAG.2014.2315592.
    1. Dai H., Yang W., Xia X., Su S., Ma K. A three-axis magnetic sensor array system for permanent magnet tracking; Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI); Baden-Baden, Germany. 19–21 September 2016; pp. 476–480.
    1. Hu C., Ren Y., You X., Yang W., Song S., Xiang S., He X., Zhang Z., Meng M.Q.H. Locating intra-body capsule object by three-magnet sensing system. IEEE Sens. J. 2016;16:5167–5176. doi: 10.1109/JSEN.2016.2558198.
    1. Wu X., Hou W., Peng C., Zheng X., Fang X., He J. Wearable magnetic locating and tracking system for MEMS medical capsule. Sens. Act. A Phys. 2008;141:432–439. doi: 10.1016/j.sna.2007.10.051.
    1. Sun Z., Foong S., Maréchal L., Tan U.X., Teo T.H., Shabbir A. A non-invasive real-time localization system for enhanced efficacy in nasogastric intubation. Ann. Biomed. Eng. 2015;43:2941–2952. doi: 10.1007/s10439-015-1361-0.
    1. Burdett E., Mitchell V. Anatomy of the larynx, trachea and bronchi. Anaesth. Intensive Care Med. 2011;12:335–339. doi: 10.1016/j.mpaic.2011.05.002.
    1. Miyasaka M., Tiong A.M.H., Phan P.T., Huang Y., Kaan H.L., Ho K.Y., Phee S.J. Two Magnetic Sensor Based Real-Time Tracking of Magnetically Inflated Swallowable Intragastric Balloon. Ann. Biomed. Eng. 2021:1–12. doi: 10.1007/s10439-020-02716-5.
    1. Bleys R.L., Weijs T.J. Minimally Invasive Surgery for Upper Abdominal Cancer. Springer; Berlin/Heidelberg, Germany: 2017. Surgical anatomy of esophagus; pp. 11–20.
    1. Jaeger J.M., Titus B.J., Blank R.S. Principles and Practice of Anesthesia for Thoracic Surgery. Springer; Berlin/Heidelberg, Germany: 2019. Essential anatomy and physiology of the respiratory system and the pulmonary circulation; pp. 65–92.
    1. Ball M., Falkson S.R., Adigun O.O. Anatomy, angle of Louis 2020. [(accessed on 29 June 2021)]; Available online:
    1. Mi W., Zhang C., Wang H., Cao J., Li C., Yang L., Guo F., Wang X., Yang T. Measurement and analysis of the tracheobronchial tree in Chinese population using computed tomography. PLoS ONE. 2015;10:e0123177. doi: 10.1371/journal.pone.0123177.
    1. García H.F., Valencia Orgaz O., López Vicente R., Gutiérrez Vidal S.E. Airway anatomy for the bronchoscopist: An anesthesia approach. Rev. Colomb. Anestesiol. 2014;42:192–198. doi: 10.1016/j.rcae.2014.02.005.
    1. Seneterre E., Paganin F., Bruel J., Michel F., Bousquet J. Measurement of the internal size of bronchi using high resolution computed tomography (HRCT) Eur. Respir. J. 1994;7:596–600. doi: 10.1183/09031936.94.07030596.
    1. Sehgal I.S., Dhooria S., Ram B., Singh N., Aggarwal A.N., Gupta D., Behera D., Agarwal R. Foreign body inhalation in the adult population: Experience of 25,998 bronchoscopies and systematic review of the literature. Respir. Care. 2015;60:1438–1448. doi: 10.4187/respcare.03976.
    1. Bellemare F., Jeanneret A., Couture J. Sex differences in thoracic dimensions and configuration. Am. J. Respir. Crit. Care Med. 2003;168:305–312. doi: 10.1164/rccm.200208-876OC.
    1. Chubar O., Elleaume P., Chavanne J. A 3D Magnetostatics Computer Code For Insertion Devices, SRI97 Conf. Aug. 1997. J. Synchrotron Rad. 1998;5:481–484. doi: 10.1107/S0909049597013502.
    1. Elleaume P., Chubar O., Chavanne J. Computing 3D magnetic fields from insertion devices; Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97CH36167); Baden-Baden, Germany. 19–21 September 2016; pp. 3509–3511.
    1. Berkelman P., Bozlee S., Miyasaka M. Interactive rigid-body dynamics and deformable surface simulations with co-located maglev haptic and 3D graphic display. Int. J. Adv. Intell. Syst. 2013;6:289–299.
    1. Berkelman P., Miyasaka M., Anderson J. Co-located 3D graphic and haptic display using electromagnetic levitation; Proceedings of the 2012 IEEE Haptics Symposium (HAPTICS); Vancouver, BC, Canada. 4–7 March 2012; pp. 77–81.
    1. Berkelman P., Bozlee S., Miyasaka M. Interactive dynamic simulations with co-located maglev haptic and 3d graphic display; Proceedings of the International Conference Advances in Computer-Human Interactions; Nice, France. 24 February–1 March 2013; pp. 324–329.
    1. Miyasaka M., Berkelman P. Magnetic levitation with unlimited omnidirectional rotation range. Mechatronics. 2014;24:252–264. doi: 10.1016/j.mechatronics.2014.02.001.
    1. Ferhatoglu M.F., Kıvılcım T. Esophageal Abnormalities. IntechOpen; London, UK: 2017. Anatomy of esophagus.
    1. Breatnach E., Abbott G.C., Fraser R.G. Dimensions of the normal human trachea. Am. J. Roentgenol. 1984;142:903–906. doi: 10.2214/ajr.142.5.903.
    1. Lee J.W., Son J.S., Choi J.W., Han Y.J., Lee J.R. The comparison of the lengths and diameters of main bronchi measured from two-dimensional and three-dimensional images in the same patients. Korean J. Anesthesiol. 2014;66:189. doi: 10.4097/kjae.2014.66.3.189.
    1. Rao M., Kallam R., Flindall I., Gatt M., Macfie J. Use of Cortrak®—An electromagnetic sensing device in placement of enteral feeding tubes. Proc. Nutr. Soc. 2008;67 doi: 10.1017/S0029665108007416.
    1. Taylor S.J., Allan K., McWilliam H., Toher D. Nasogastric tube depth: The ‘NEX’guideline is incorrect. Br. J. Nurs. 2014;23:641–644. doi: 10.12968/bjon.2014.23.12.641.
    1. Williamson S.J., Kaufman L. Biomagnetism. J. Magn. Magn. Mater. 1981;22:129–201. doi: 10.1016/0304-8853(81)90078-0.
    1. Kaan H.L., Phan P.T., Tiong A.M.H., Miyasaka M., Phee S.J., Ho K.Y. First-in-man feasibility study of a novel ingestible magnetically inflated balloon capsule for treatment of obesity. Endosc. Int. Open. 2020;8:E607. doi: 10.1055/a-1127-2991.
    1. Phan P.T., Tiong A.M.H., Miyasaka M., Cao L., Kaan H.L., Ho K.Y., Phee S.J. EndoPil: A magnetically actuated swallowable capsule for weight management: Development and trials. Ann. Biomed. Eng. 2020;49:1–11.
    1. Mateen H., Basar R., Ahmed A.U., Ahmad M.Y. Localization of wireless capsule endoscope: A systematic review. IEEE Sens. J. 2017;17:1197–1206. doi: 10.1109/JSEN.2016.2645945.

Source: PubMed

3
Předplatit