Original Hosts, Clinical Features, Transmission Routes, and Vaccine Development for Coronavirus Disease (COVID-19)

Ting Wu, Shuntong Kang, Wenyao Peng, Chenzhe Zuo, Yuhao Zhu, Liangyu Pan, Keyun Fu, Yaxian You, Xinyuan Yang, Xuan Luo, Liping Jiang, Meichun Deng, Ting Wu, Shuntong Kang, Wenyao Peng, Chenzhe Zuo, Yuhao Zhu, Liangyu Pan, Keyun Fu, Yaxian You, Xinyuan Yang, Xuan Luo, Liping Jiang, Meichun Deng

Abstract

The pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to public concern worldwide. Although a variety of hypotheses about the hosts of SARS-CoV-2 have been proposed, an exact conclusion has not yet been reached. Initial clinical manifestations associated with COVID-19 are similar to those of other acute respiratory infections, leading to misdiagnoses and resulting in the outbreak at the early stage. SARS-CoV-2 is predominantly spread by droplet transmission and close contact; the possibilities of fecal-oral, vertical, and aerosol transmission have not yet been fully confirmed or rejected. Besides, COVID-19 cases have been reported within communities, households, and nosocomial settings through contact with confirmed COVID-19 patients or asymptomatic individuals. Environmental contamination is also a major driver for the COVID-19 pandemic. Considering the absence of specific treatment for COVID-19, it is urgent to decrease the risk of transmission and take preventive measures to control the spread of the virus. In this review, we summarize the latest available data on the potential hosts, entry receptors, clinical features, and risk factors of COVID-19 and transmission routes of SARS-CoV-2, and we present the data about development of vaccines.

Keywords: COVID-19; SARS-CoV-2; original host; transmission modes; vaccine development.

Conflict of interest statement

XL was employed by Hunan Yuanpin Cell Biotechnology Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wu, Kang, Peng, Zuo, Zhu, Pan, Fu, You, Yang, Luo, Jiang and Deng.

Figures

Figure 1
Figure 1
Potential hosts, entry receptors and clinical features of SARS-CoV-2. Bats might be the original host of ARS-CoV-2 and several animals including snake, mink, pangolin, turtle, cat, ferret and dog might be intermediate hosts; Several receptors, including ACE2, AXL, CD147, LILRB2, SIGLEC-9, DC-SIGN, NRP1, ASCR1, and KREMEN1, have been recognized as candidate cell entry receptors for SARS-CoV-2. The initial manifestations associated with COVID-19 are not specific, including fever, cough, fatigue, myalgia, and dyspnea, which could involve in several organs.
Figure 2
Figure 2
Transmission routes of SARS-COV-2. SARS-CoV-2 predominantly spreads via droplet transmission and through direct contact. the main transmission route is droplet transmission. The persistence of SARS-CoV-2 on inanimate surfaces (Fomites transmission) is likely a compounding factor for viral transmission. Airbone, fecal-oral, sexual and vertical transmission haven't been observed in current cases. Viral transmission through breastfeeding and transmission from domestic animal to human still need to be confirmed. The main transmission of SARS-CoV-2 occurs between family members. Nosocomial transmission is supposed to be an important route of infection. Asymptomatic and pre-symptomatic individuals appear to be a substantial threaten for public health because of high secondary attack rate of them. Solid arrows show confirmed transmission route. Dashed lines show possible transmission routes needed to be confirmed.

References

    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. (2020) 395:497–506. 10.1016/S0140-6736(20)30183-5
    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. . Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. (2020) 382:1199–207. 10.1056/NEJMoa2001316
    1. Pan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. . Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. (2020) 20:410–1. 10.1016/S1473-3099(20)30114-6
    1. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. . Bats are natural reservoirs of SARS-like coronaviruses. Science. (2005) 310:676–9. 10.1126/science.1118391
    1. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. (2020) 26:450–2. 10.1038/s41591-020-0820-9
    1. Lau SKP, Luk HKH, Wong ACP, Li KSM, Zhu L, He Z, et al. . Possible bat origin of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. (2020) 26:1542–7. 10.3201/eid2607.200092
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020) 579:270–3. 10.1038/s41586-020-2951-z
    1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. (2021) 19:141–54. 10.1038/s41579-020-00459-7
    1. Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, et al. . A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol. (2020) 30:2196–203.e3. 10.1016/j.cub.2020.05.023
    1. Hu D, Zhu C, Ai L, He T, Wang Y, Ye F, et al. . Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect. (2018) 7:154. 10.1038/s41426-018-0155-5
    1. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al. . Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. (2020) 583:282–5. 10.1038/s41586-020-2169-0
    1. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. . Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. (2020) 583:286–9. 10.1038/s41586-020-2313-x
    1. Lopes LR, de Mattos Cardillo G, Paiva PB. Molecular evolution and phylogenetic analysis of SARS-CoV-2 and hosts ACE2 protein suggest Malayan pangolin as intermediary host. Braz J Microbiol. (2020) 51:1593–9. 10.1007/s42770-020-00321-1
    1. Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y. Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J Proteome Res. (2020) 19:1351–60. 10.1021/acs.jproteome.0c00129
    1. Dong R, Pei S, Yin C, He RL, Yau SS. Analysis of the hosts and transmission paths of SARS-CoV-2 in the COVID-19 outbreak. Genes. (2020) 11:60637. 10.3390/genes11060637
    1. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. (2020) 30:1346–51.e2. 10.1016/j.cub.2020.03.022
    1. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. (2020) 92:433–40. 10.1002/jmv.25682
    1. Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, et al. . Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. (2020) 92:595–601. 10.1002/jmv.25726
    1. Guo Q, Li M, Wang C, Wang P, Fang Z, tan J, et al. . Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv [Preprint]. 10.1101/2020.01.21.914044
    1. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der Honing RW, et al. . SARS-CoV-2 infection in farmed minks, the Netherlands, April and May (2020). Euro Surveill. (2020) 25:1005. 10.2807/1560-7917.ES.2020.25.23.2001005
    1. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, et al. . Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science. (2021) 371:172–7. 10.1126/science.abe5901
    1. Zhang Q, Zhang H, Huang K, Yang Y, Hui X, Gao J, et al. . A serologucal survey of SARS-CoV-2 in cat in WuHan. Emerg Microbes Infect. (2020) 9: 2013–9. 10.1080/22221751.2020.1817796
    1. Sit THC, Brackman CJ, Ip SM, Tam KWS, Law PYT, To EMW, et al. . Infection of dogs with SARS-CoV-2. Nature. (2020) 586:776–8. 10.1038/s41586-020-2334-5
    1. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. . Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. (2020) 368:1016–20. 10.1126/science.abb7015
    1. Lutz C, Maher L, Lee C, Kang W. COVID-19 preclinical models: human angiotensin-converting enzyme 2 transgenic mice. Hum Genomics. (2020) 14:20. 10.1186/s40246-020-00272-6
    1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. (2019) 17:181–92. 10.1038/s41579-018-0118-9
    1. Cyranoski D. The biggest mystery: what it will take to trace the coronavirus source. Nature. (2020). 10.1038/d41586-020-01541-z
    1. Segreto R, Deigin Y. The genetic structure of SARS-CoV-2 does not rule out a laboratory origin: SARS-COV-2 chimeric structure and furin cleavage site might be the result of genetic manipulation. Bioessays. (2021) 43:e2000240. 10.1002/bies.202000240
    1. Tyshkovskiy A, Panchin AY. There is no evidence of SARS-CoV-2 laboratory origin: response to segreto and deigin. Bioessays. (2021) 2021:e2000325. 10.1002/bies.202000325
    1. Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol. (2019) 34:117–29. 10.1016/j.coviro.2019.01.004
    1. Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci. (2004) 61:2738–43. 10.1007/s00018-004-4242-5
    1. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. . Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. (2020) 581:215–20. 10.1038/s41586-020-2180-5
    1. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. . Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. (2020) 126:1456–74. 10.1161/CIRCRESAHA.120.317015
    1. Liu Q, Wang RS, Qu GQ, Wang YY, Liu P, Zhu YZ, et al. . Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi. (2020) 36:21–3. 10.12116/j.issn.1004-5619.2020.01.005
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. . Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. (2020) 367:1260–3. 10.1126/science.abb2507
    1. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. . Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. (2020) 117:11727–34. 10.1073/pnas.2003138117
    1. Wang S, Qiu Z, Hou Y, Deng X, Xu W, Zheng T, et al. . AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. (2021) 31:126–40. 10.1038/s41422-020-00460-y
    1. Guillot S, Delaval P, Brinchault G, Caulet-Maugendre S, Depince A, Lena H, et al. . Increased extracellular matrix metalloproteinase inducer (EMMPRIN) expression in pulmonary fibrosis. Exp Lung Res. (2006) 32:81–97. 10.1080/01902140600710512
    1. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. . CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. (2020) 5:283. 10.1038/s41392-020-00426-x
    1. Muus C, Luecken MD, Eraslan G, Sikkema L, Waghray A, Heimberg G, et al. ., Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med. (2021) 27:546–59. 10.1038/s41591-020-01227-z
    1. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, et al. . CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA. (2004) 101:15748–53. 10.1073/pnas.0403812101
    1. Cai G, Cui X, Zhu X, Zhou J. A hint on the COVID-19 risk: population disparities in gene expression of three receptors of SARS-CoV. Preprints. (2020). 10.20944/preprints202002.0408.v1
    1. Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Antón-Plágaro C, et al. . Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. (2020) 370:861–5. 10.1126/science.abd3072
    1. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. . Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. (2020) 370:856–60. 10.1126/science.abd2985
    1. Seidah NG, Chrétien M, Mbikay M. The ever-expanding saga of the proprotein convertases and their roles in body homeostasis: emphasis on novel proprotein convertase subtilisin kexin number 9 functions and regulation. Curr Opin Lipidol. (2018) 29:144–50. 10.1097/MOL.0000000000000484
    1. Saunier B, Triyatni M, Ulianich L, Maruvada P, Yen P, Kohn LD. Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol. (2003) 77:546–59. 10.1128/JVI.77.1.546-559.2003
    1. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. . Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. (2002) 417:664–7. 10.1038/nature756
    1. Liu F, Thirumangalathu S, Gallant NM, Yang SH, Stoick-Cooper CL, Reddy ST, et al. . Wnt-beta-catenin signaling initiates taste papilla development. Nat Genet. (2007) 39:106–12. 10.1038/ng1932
    1. Gu Y, Cao J, Zhang X, Gao H, Wang Y, Wang J, et al. . Interaction network of SARS-CoV-2 with host receptome through spike protein. bioRxiv [Preprint]. (2020). 10.1101/2020.09.09.287508
    1. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. . Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. (2020) 26:842–4. 10.1038/s41591-020-0901-9
    1. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. (2020) 178:104792. 10.1016/j.antiviral.2020.104792
    1. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. (2020) 176:104742. 10.1016/j.antiviral.2020.104742
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. . SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. (2020) 181:271–80.e8. 10.1016/j.cell.2020.02.052
    1. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. . SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. Embo J. (2020) 39:e105114. 10.15252/embj.20105114
    1. Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci USA. (2005) 102:12543–7. 10.1073/pnas.0503203102
    1. Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. (2015) 202:120–34. 10.1016/j.virusres.2014.11.021
    1. Liu T, Luo S, Libby P, Shi GP. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Ther. (2020) 213:107587. 10.1016/j.pharmthera.2020.107587
    1. Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, et al. . Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. (2011) 7:e1001258. 10.1371/journal.ppat.1001258
    1. Yang N, Ma P, Lang J, Zhang Y, Deng J, Ju X, et al. . Phosphatidylinositol 4-kinase IIIβ is required for severe acute respiratory syndrome coronavirus spike-mediated cell entry. J Biol Chem. (2012) 287:8457–67. 10.1074/jbc.M111.312561
    1. Hu Y, Sun J, Dai Z, Deng H, Li X, Huang Q, et al. . Prevalence and severity of corona virus disease 2019. COVID-19: A systematic review and meta-analysis. J Clin Virol. (2020) 127:104371. 10.1016/j.jcv.2020.104371
    1. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, et al. . Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. (2003) 289:2801–9. 10.1001/jama.289.21.JOC30885
    1. Choi WS, Kang CI, Kim Y, Choi JP, Joh JS, Shin HS, et al. . Clinical presentation and outcomes of middle east respiratory syndrome in the Republic of Korea. Infect Chemother. (2016) 48:118–26. 10.3947/ic.2016.48.2.118
    1. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. (2020) 382:1708–20. 10.1056/NEJMoa2002032
    1. Jiang X, Niu Y, Li X, Li L, Cai W, Chen Y, et al. . Is a 14-day quarantine period optimal for effectively controlling coronavirus disease 2019 (COVID-19)? medRxiv. (2020). 10.1101/2020.03.15.20036533
    1. Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, et al. . The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol. (2020) 55:327–31. 10.1097/RLI.0000000000000672
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. . Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. (2020) 395:1054–62. 10.1016/S0140-6736(20)30566-3
    1. Han C, Duan C, Zhang S, Spiegel B, Shi H, Wang W, et al. . Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol. (2020) 115:916–23. 10.14309/ajg.0000000000000664
    1. Eliezer M, Hautefort C, Hamel AL, Verillaud B, Herman P, Houdart E, et al. . Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. (2020) 146:674–5. 10.1001/jamaoto.2020.0832
    1. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. . Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. (2020) 277:2251–61. 10.1007/s00405-020-05965-1
    1. Wu T, Zuo Z, Kang S, Jiang L, Luo X, Xia Z, et al. . Multi-organ dysfunction in patients with COVID-19: a systematic review and meta-analysis. Aging Dis. (2020) 11:874–94. 10.14336/AD.2020.0520
    1. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. . Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. (2020) 295:200463. 10.1148/radiol.2020200463
    1. Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, et al. . Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology. (2020) 296:E55–64. 10.1148/radiol.2020200843
    1. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. . Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology. (2020) 295:715–21. 10.1148/radiol.2020200370
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. . Clinical characteristics of 138 hospitalized patients with 2019. Novel coronavirus-infected pneumonia in Wuhan, China. JAMA. (2020) 323:1061–9. 10.1001/jama.2020.1585
    1. Trigonis RA, Holt DB, Yuan R, Siddiqui AA, Craft MK, Khan BA, et al. . Incidence of venous thromboembolism in critically ill coronavirus disease 2019. Patients receiving prophylactic anticoagulation. Crit Care Med. (2020) 48:e805–8. 10.1097/CCM.0000000000004472
    1. Wu T, Zuo Z, Yang D, Luo X, Jiang L, Xia Z, et al. . Venous thromboembolic events in patients with COVID-19: a systematic review and meta-analysis. Age Ageing. (2021) 50:284–93. 10.1093/ageing/afaa259
    1. Zuo Z, Wu T, Pan L, Zuo C, Hu Y, Luo X, et al. . Modalities and mechanisms of treatment for coronavirus disease 2019. Front Pharmacol. (2020) 11:583914. 10.3389/fphar.2020.583914
    1. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. . Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. (2020) 8:475–81. 10.1016/S2213-2600(20)30079-5
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese center for disease control and prevention. JAMA. (2020) 323:1239–42. 10.1001/jama.2020.2648
    1. Zhang JJ, Cao YY, Tan G, Dong X, Wang BC, Lin J, et al. . Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy. (2021) 76:533–50. 10.1111/all.14496
    1. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. . Factors associated with COVID-19-related death using OpenSAFELY. Nature. (2020) 584:430–6. 10.1038/s41586-020-2521-4
    1. Lassale C, Gaye B, Hamer M, Gale CR, Batty GD. Ethnic disparities in hospitalisation for COVID-19 in England: The role of socioeconomic factors, mental health, and inflammatory and pro-inflammatory factors in a community-based cohort study. Brain Behav Immun. (2020) 88:44–9. 10.1016/j.bbi.2020.05.074
    1. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. . Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. (2020) 21:335–7. 10.1016/S1470-2045(20)30096-6
    1. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. . Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. (2020) 180:934–43. 10.1001/jamainternmed.2020.0994
    1. Liu W, Tao ZW, Wang L, Yuan ML, Liu K, Zhou L, et al. . Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J. (2020) 133:1032–8. 10.1097/CM9.0000000000000775
    1. Martinez-Portilla RJ, Sotiriadis A, Chatzakis C, Torres-Torres J, Espino YSS, Sandoval-Mandujano K, et al. . Pregnant women with SARS-CoV-2 infection are at higher risk of death and pneumonia: propensity score matched analysis of a nationwide prospective cohort (COV19Mx). Ultrasound Obstet Gynecol. (2021) 57:224–31. 10.1002/uog.23575
    1. Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM, et al. . Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. (2020) 20:656–7. 10.1016/S1473-3099(20)30232-2
    1. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. . Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. (2020) 20:565–74. 10.1016/S1473-3099(20)30196-1
    1. Tan L, Kang X, Zhang B, Zheng S, Liu B, Yu T, et al. . A special case of COVID-19 with long duration of viral shedding for 49 days. medRxiv [Preprint]. (2020). 10.1101/2020.03.22.20040071
    1. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. . Virological assessment of hospitalized patients with COVID-2019. Nature. (2020) 581:465–9. 10.1038/s41586-020-2196-x
    1. Muñiz-Diaz E, Llopis J, Parra R, Roig I, Ferrer G, Grifols J, et al. . Relationship between the ABO blood group and COVID-19 susceptibility, severity and mortality in two cohorts of patients. Blood Transfus. (2021) 19:54–63. 10.2450/2020.0256-20
    1. Ray JG, Schull MJ, Vermeulen MJ, Park AL. Association between ABO and Rh blood groups and SARS-CoV-2 infection or severe COVID-19 illness: a population-based cohort study. Ann Intern Med. (2021) 174:308–15. 10.7326/M20-4511
    1. Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, et al. . Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci Total Environ. (2020) 724:138226. 10.1016/j.scitotenv.2020.138226
    1. Grint DJ, Wing K, Williamson E, McDonald HI, Bhaskaran K, Evans D, et al. . Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February. Euro Surveill. (2021) 26:256. 10.2807/1560-7917.ES.2021.26.11.2100256
    1. Hu J, Li C, Wang S, Li T, Zhang H. Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. Hum Genomics. (2021) 15:10. 10.1186/s40246-021-00306-7
    1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. . Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. (2020) 323:1843–4. 10.1001/jama.2020.3786
    1. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. (2020) 20:411–2. 10.1016/S1473-3099(20)30113-4
    1. Ghinai I, McPherson TD, Hunter JC, Kirking HL, Christiansen D, Joshi K, et al. . First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet. (2020) 395:1137–44. 10.1016/S0140-6736(20)30607-3
    1. Han Q, Lin Q, Ni Z, You L. Uncertainties about the transmission routes of 2019 novel coronavirus. Influenza Other Respir Viruses. (2020) 14:470–1. 10.1111/irv.12735
    1. Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, et al. . Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. (2020) 582:557–60. 10.1038/s41586-020-2271-3
    1. Bays DJ, Nguyen MH, Cohen SH, Waldman S, Martin CS, Thompson GR, et al. . Investigation of nosocomial SARS-CoV-2 transmission from two patients to health care workers identifies close contact but not airborne transmission events. Infect Control Hosp Epidemiol. (2020) 2020:1–22. 10.1017/ice.2020.321
    1. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. . Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. (2020) 382:1564–7. 10.1056/NEJMc2004973
    1. Wu P, Duan F, Luo C, Liu Q, Qu X, Liang L, et al. . Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. (2020) 138:575–8. 10.1001/jamaophthalmol.2020.1291
    1. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. (2020) 158:1831–3.e3. 10.1053/j.gastro.2020.02.055
    1. Song C, Wang Y, Li W, Hu B, Chen G, Xia P, et al. . Detection of 2019 novel coronavirus in semen and testicular biopsy specimen of COVID-19 patients. medRxiv [Preprint]. (2020). 10.1101/2020.03.31.20042333
    1. Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open. (2020) 3:e208292. 10.1001/jamanetworkopen.2020.8292
    1. Penfield CA, Brubaker SG, Limaye MA, Lighter J, Ratner AJ, Thomas KM, et al. . Detection of severe acute respiratory syndrome coronavirus 2 in placental and fetal membrane samples. Am J Obstet Gynecol MFM. (2020) 2:100133. 10.1016/j.ajogmf.2020.100133
    1. Hu X, Gao J, Luo X, Feng L, Liu W, Chen J, et al. . Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vertical transmission in neonates born to mothers with coronavirus disease 2019 (COVID-19) pneumonia. Obstet Gynecol. (2020) 136:65–7. 10.1097/AOG.0000000000003926
    1. Wang S, Guo L, Chen L, Liu W, Cao Y, Zhang J, et al. . A case report of neonatal 2019 coronavirus disease in China. Clin Infect Dis. (2020) 71:853–7. 10.1093/cid/ciaa225
    1. Dong L, Tian J, He S, Zhu C, Wang J, Liu C, et al. . Possible vertical transmission of SARS-CoV-2 from an infected mother to Her Newborn. JAMA. (2020) 323:1846–8. 10.1001/jama.2020.4621
    1. Ferrazzi E, Frigerio L, Savasi V, Vergani P, Prefumo F, Barresi S, et al. . Vaginal delivery in SARS-CoV-2-infected pregnant women in Northern Italy: a retrospective analysis. Bjog. (2020) 127:1116–21. 10.1111/1471-0528.16278
    1. Zhu C, Liu W, Su H, Li S, Shereen MA, Lv Z, et al. . Breastfeeding risk from detectable severe acute respiratory syndrome coronavirus 2 in breastmilk. J Infect. (2020) 81:452–82. 10.1016/j.jinf.2020.06.001
    1. Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM, Okba NMA, et al. . SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. (2020) 11:3496. 10.1038/s41467-020-17367-2
    1. Halfmann PJ, Hatta M, Chiba S, Maemura T, Fan S, Takeda M, et al. . Transmission of SARS-CoV-2 in domestic cats. N Engl J Med. (2020) 383:592–4. 10.1056/NEJMc2013400
    1. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. . Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. (2020) 20:911–919. 10.1016/S1473-3099(20)30287-5
    1. Luo L, Liu D, Liao X-l, Wu X-b, Jing Q-l, Zheng J-z, et al. . Modes of contact and risk of transmission in COVID-19 among close contacts. medRxiv [Preprint]. (2020). 10.1101/2020.03.24.20042606
    1. Ng OT, Marimuthu K, Koh V, Pang J, Linn KZ, Sun J, et al. . SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study. Lancet Infect Dis. (2021) 21:333–43. 10.1016/S1473-3099(20)30833-1
    1. Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk factors of healthcare workers with coronavirus disease 2019: a retrospective cohort study in a designated hospital of Wuhan in China. Clin Infect Dis. (2020) 71:2218–21. 10.1093/cid/ciaa287
    1. Wang X, Pan Z, Cheng Z. Association between 2019-nCoV transmission and N95 respirator use. J Hosp Infect. (2020) 105:104–5. 10.1016/j.jhin.2020.02.021
    1. Lan FY, Wei CF, Hsu YT, Christiani DC, Kales SN. Work-related COVID-19 transmission in six Asian countries/areas: A follow-up study. PLoS ONE. (2020) 15:e0233588. 10.1371/journal.pone.0233588
    1. Zhu Y, Chen L, Ji H, Xi M, Fang Y, Li Y. The risk and prevention of novel coronavirus pneumonia infections among inpatients in psychiatric hospitals. Neurosci Bull. (2020) 36:299–302. 10.1007/s12264-020-00476-9
    1. Biryukov J, Boydston JA, Dunning RA, Yeager JJ, Wood S, Reese AL, et al. . Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on surfaces. mSphere. (2020) 5:441. 10.1128/mSphere.00441-20
    1. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. . A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. (2020) 395:514–23. 10.1016/S0140-6736(20)30154-9
    1. Ye F, Xu S, Rong Z, Xu R, Liu X, Deng P, et al. . Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster. Int J Infect Dis. (2020) 94:133–8. 10.1016/j.ijid.2020.03.042
    1. Li P, Fu JB, Li KF, Liu JN, Wang HL, Liu LJ, et al. . Transmission of COVID-19 in the terminal stages of the incubation period: A familial cluster. Int J Infect Dis. (2020) 96:452–3. 10.1016/j.ijid.2020.03.027
    1. Wang Z, Ma W, Zheng X, Wu G, Zhang R. Household transmission of SARS-CoV-2. J Infect. (2020) 81:179–82. 10.1016/j.jinf.2020.03.040
    1. Li F, Li YY, Liu MJ, Fang LQ, Dean NE, Wong GWK, et al. . Household transmission of SARS-CoV-2 and risk factors for susceptibility and infectivity in Wuhan: a retrospective observational study. Lancet Infect Dis. (2021) 21:617–28. 10.1016/S1473-3099(20)30981-6
    1. Reukers DFM, van Boven M, Meijer A, Rots N, Reusken C, Roof I, et al. . High infection secondary attack rates of SARS-CoV-2 in Dutch households revealed by dense sampling. Clin Infect Dis. (2021). 10.1093/cid/ciab237
    1. Lombardi A, Consonni D, Carugno M, Bozzi G, Mangioni D, Muscatello A, et al. . Characteristics of 1573 healthcare workers who underwent nasopharyngeal swab testing for SARS-CoV-2 in Milan, Lombardy, Italy. Clin Microbiol Infect. (2020) 26:1413.e9-1413.e13. 10.1016/j.cmi.2020.06.013
    1. Khan KS, Reed-Embleton H, Lewis J, Saldanha J, Mahmud S. Does nosocomial COVID-19 result in increased 30-day mortality? A multi-centre observational study to identify risk factors for worse outcomes in patients with COVID-19. J Hosp Infect. (2021) 107:91–4. 10.1016/j.jhin.2020.09.017
    1. Rickman HM, Rampling T, Shaw K, Martinez-Garcia G, Hail L, Coen P, et al. . Nosocomial transmission of coronavirus disease 2019: a retrospective study of 66 hospital-acquired cases in a London teaching hospital. Clin Infect Dis. (2021) 72:690–3. 10.1093/cid/ciaa816
    1. Goldberg L, Levinsky Y, Marcus N, Hoffer V, Gafner M, Hadas S, et al. . SARS-CoV-2 infection among health care workers despite the use of surgical masks and physical distancing-the role of airborne transmission. Open Forum Infect Dis. (2021) 8:ofab036. 10.1093/ofid/ofab036
    1. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. . SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. (2020) 382:1177–9. 10.1056/NEJMc2001737
    1. Wei WE, Li Z, Chiew CJ, Yong SE, Toh MP, Lee VJ. Presymptomatic transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020. MMWR Morb Mortal Wkly Rep. (2020) 69:411–5. 10.15585/mmwr.mm6914e1
    1. Luo C, Yao L, Zhang L, Yao M, Chen X, Wang Q, et al. . Possible transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a public bath center in Huai'an, Jiangsu Province, China. JAMA Netw Open. (2020) 3:e204583. 10.1001/jamanetworkopen.2020.4583
    1. Zhang J, Tian S, Lou J, Chen Y. Familial cluster of COVID-19 infection from an asymptomatic. Crit Care. (2020) 24:119. 10.1186/s13054-020-2817-7
    1. Liu J, Huang J, Xiang D. Large SARS-CoV-2 outbreak caused by asymptomatic traveler, China. Emerg Infect Dis. (2020) 26:2260–3. 10.3201/eid2609.201798
    1. Wu P, Liu F, Chang Z, Lin Y, Ren M, Zheng C, et al. . Assessing asymptomatic, pre-symptomatic and symptomatic transmission risk of SARS-CoV-2. Clin Infect Dis. (2021) 27:ciab271. 10.1093/cid/ciab271
    1. Chun JY, Baek G, Kim Y. Transmission onset distribution of COVID-19. Int J Infect Dis. (2020) 99:403–7. 10.1016/j.ijid.2020.07.075
    1. Jang S, Rhee JY, Wi YM, Jung BK. Viral kinetics of SARS-CoV-2 over the preclinical, clinical, and post-clinical period. Int J Infect Dis. (2021) 102:561–5. 10.1016/j.ijid.2020.10.099
    1. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. . Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. (2020) 26:672–5. 10.1038/s41591-020-0869-5
    1. Kawasuji H, Takegoshi Y, Kaneda M, Ueno A, Miyajima Y, Kawago K, et al. . Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients. PLoS ONE. (2020) 15:e0243597. 10.1371/journal.pone.0243597
    1. Marks M, Millat-Martinez P, Ouchi D, Roberts CH, Alemany A, Corbacho-Monné M, et al. . Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. Lancet Infect Dis. (2021) 21:629–36. 10.1016/S1473-3099(20)30985-3
    1. Goyal A, Reeves DB, Cardozo-Ojeda EF, Schiffer JT, Mayer BT. Viral load and contact heterogeneity predict SARS-CoV-2 transmission and super-spreading events. Elife. (2021) 10:63537. 10.7554/eLife.63537
    1. Guo ZD, Wang ZY, Zhang SF, Li X, Li L, Li C, et al. . Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. (2020) 26:1583–91. 10.3201/eid2607.200885
    1. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. . Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. (2020) 323:1610–2. 10.1001/jama.2020.3227
    1. Lei H, Ye F, Liu X, Huang Z, Ling S, Jiang Z, et al. . SARS-CoV-2 environmental contamination associated with persistently infected COVID-19 patients. Influenza Other Respir Viruses. (2020) 14:688–99. 10.1111/irv.12783
    1. Xie C, Zhao H, Li K, Zhang Z, Lu X, Peng H, et al. . The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health. (2020) 20:1202. 10.1186/s12889-020-09296-y
    1. Doung-Ngern P, Suphanchaimat R, Panjangampatthana A, Janekrongtham C, Ruampoom D, Daochaeng N, et al. . Case-control study of use of personal protective measures and risk for SARS-CoV 2 infection, Thailand. Emerg Infect Dis. (2020) 26:2607–16. 10.3201/eid2611.203003
    1. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. . Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv [Preprint]. (2020). 10.1101/2020.12.21.20248640
    1. Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT, Vail E. Emergence of a novel SARS-CoV-2 Variant in Southern California. JAMA. (2021) 325:1324–6. 10.1001/jama.2021.1612
    1. Mwenda M, Saasa N, Sinyange N, Busby G, Chipimo PJ, Hendry J, et al. . Detection of B.1.351 SARS-CoV-2 variant strain - Zambia, December (2020). MMWR Morb Mortal Wkly Rep. (2021) 70:280–2. 10.15585/mmwr.mm7008e2
    1. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. . Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. (2020) 182:812–27.e19. 10.1016/j.cell.2020.06.043
    1. Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR, et al. . The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife. (2021) 10:65365. 10.7554/eLife.65365.sa2
    1. Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon KH, et al. . SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. (2020) 370:1464–8. 156. 10.1126/science.abe8499
    1. Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, et al. . Nature. (2021) 592:122–7. 10.1038/s41586-021-03361-1
    1. Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, et al. . Modelling the association between COVID-19 transmissibility and D614G substitution in SARS-CoV-2 spike protein: using the surveillance data in California as an example. Theor Biol Med Model. (2021) 18:10. 10.1186/s12976-021-00140-3
    1. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. . Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. (2021) 593:130–5. 10.1038/s41586-021-03398-2
    1. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. . Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. (2021) 372:abg3055. 10.1126/science.abg3055
    1. Washington NL, Gangavarapu K, Zeller M, Bolze A, Cirulli ET, Schiabor Barrett KM, et al. . Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. medRxiv [Preprint]. (2021). 10.1101/2021.02.06.21251159
    1. Carl AB, Pearson TWR, Nicholas D, Kucharski AJ. Estimates of Severity and Transmissibility of Novel SARS-CoV-2 Variant 501Y.V2 in South Africa. (2021). Available online at:
    1. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. . Cell. (2021). 10.1016/j.cell.2021.04.025
    1. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, et al. . Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. (2021) 372:815–21. 10.1126/science.abh2644
    1. Mallapaty S. India's massive COVID surge puzzles scientists. Nature. (2021) 592:667–8. 10.1038/d41586-021-01059-y
    1. Kumar V, Singh J, Hasnain SE, Sundar D. Possible link between higher transmissibility of B.1.617 and B.1.1.7 variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity. bioRxiv [Preprint]. (2021). 10.1101/2021.04.29.441933
    1. Hoffmann M, Hofmann-Winkler H, Krüger N, Kempf A, Nehlmeier I, Graichen L, et al. . SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination. bioRxiv [Preprint]. (2021). 10.1101/2021.05.04.442663
    1. Yadav PD, Mohandas S, Shete AM, Nyayanit DA, Gupta N, Patil DY, et al. . SARS CoV-2 variant B.1.617.1 is highly pathogenic in hamsters than B.1 variant. bioRxiv [Preprint]. (2021). 10.1101/2021.05.05.442760
    1. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. . The impact of mutations in SARS-CoV-2 Spike on viral infectivity and antigenicity. Cell. (2020) 182:1284–94.e9. 10.1016/j.cell.2020.07.012
    1. Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H, et al. . SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. (2021) 184:2362–71.e9. 10.1016/j.cell.2021.02.042
    1. Zhang L, Huynh T, Luan B. In silico assessment of antibody drug resistance to bamlanivimab of SARS-CoV-2 variant B.1.617. bioRxiv [Preprint]. (2021). 10.1101/2021.05.12.443826
    1. Skowronski DM, De Serres G. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. (2021) 384:2036242. 10.1056/NEJMc2036242
    1. Chodick G, Tene L, Patalon T, Gazit S, Tov AB, Cohen D, et al. . Assessment of effectiveness of 1 dose of BNT162b2 vaccine for SARS-CoV-2 infection 13 to 24 days after immunization. JAMA Netw Open. (2021) 4:e2115985. 10.1001/jamanetworkopen.2021.15985
    1. Levine-Tiefenbrun M, Yelin I, Katz R, Herzel E, Golan Z, Schreiber L, et al. . Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat Med. (2021) 27:790–2. 10.1038/s41591-021-01316-7
    1. Ebinger JE, Fert-Bober J, Printsev I, Wu M, Sun N, Prostko JC, et al. . Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat Med. (2021). 10.1038/s41591-021-01325-6
    1. Muik A, Wallisch AK, Sänger B, Swanson KA, Mühl J, Chen W, et al. . Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science. (2021) 371:1152–3. 10.1126/science.abg6105
    1. Sansone E, Tiraboschi M, Sala E, Albini E, Lombardo M, Castelli F, et al. . Effectiveness of BNT162b2 vaccine against the B.1.1.7 variant of SARS-CoV-2 among healthcare workers in Brescia, Italy. J Infect. (2021). 10.1016/j.jinf.2021.04.038
    1. Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N Engl J Med. (2021) 5:NEJMc2104974. 10.1056/NEJMc2104974
    1. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. . Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. (2021) 397:1819–29. 10.1016/S0140-6736(21)00947-8
    1. Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. . COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. Lancet. (2021) 397:1725–35. 10.1016/S0140-6736(21)00790-X
    1. Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al. . Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. (2021) 27:620–1. 10.1038/s41591-021-01270-4
    1. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. . Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. (2021) 384:403–16. 10.1056/NEJMoa2035389
    1. Shen X, Tang H, McDanal C, Wagh K, Fischer W, Theiler J, et al. . SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe. (2021) 29:529–39.e3. 10.1016/j.chom.2021.03.002
    1. Edara VV, Norwood C, Floyd K, Lai L, Davis-Gardner ME, Hudson WH, et al. . Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant. Cell Host Microbe. (2021) 29:516–21.e3. 10.1016/j.chom.2021.03.009
    1. Shen X, Tang H, Pajon R, Smith G, Glenn GM, Shi W, et al. . Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351. N Engl J Med. (2021) 7:NEJMc2103740. 10.1056/NEJMc2103740
    1. Bos R, Rutten L, van der Lubbe JEM, Bakkers MJG, Hardenberg G, Wegmann F, et al. . Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines. (2020) 5:91. 10.1038/s41541-020-00243-x
    1. Muir KL, Kallam A, Koepsell SA, Gundabolu K. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. N Engl J Med. (2021) 384:1964–5. 10.1056/NEJMc2105869
    1. Ricardo P, Batista AP. Efficacy and safety of a COVID-19 inactivated vaccine in healthcare 2 professionals in Brazil: The PROFISCOV study. Preprint. (2021). 10.2139/ssrn.3822780
    1. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. . Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. (2021) 21:39–51. 10.1016/S1473-3099(20)30831-8
    1. Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W, et al. . Neutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines. bioRxiv [Preprint]. (2021). 10.1101/2021.02.01.429069

Source: PubMed

3
Předplatit