Intensive Postural and Motor Activity Program Reduces Scoliosis Progression in People with Rett Syndrome

Alberto Romano, Elena Ippolito, Camilla Risoli, Edoardo Malerba, Martina Favetta, Andrea Sancesario, Meir Lotan, Daniel Sender Moran, Alberto Romano, Elena Ippolito, Camilla Risoli, Edoardo Malerba, Martina Favetta, Andrea Sancesario, Meir Lotan, Daniel Sender Moran

Abstract

Background: A scoliosis prevalence of 94% was reported in the population with Rett syndrome (RTT), with an annual progression rate of 14 to 21° Cobb which may result in pain, loss of sitting balance, deterioration of motor skills, and lung disfunction. This paper describes the efficacy of an intensive conservative individualized physical and postural activity program in preventing scoliosis curvature progression in patients with RTT.

Methods: Twenty subjects diagnosed with RTT and scoliosis were recruited, and an individualized intensive daily physical activity program was developed for each participant. Each program was conducted for six months by participants' primary caregivers in their daily living environment. Fortnightly remote supervision of the program implementation was provided by an expert therapist. Pre- and post-intervention radiographs and motor functioning were analyzed.

Results: An averaged progression of +1.7° ± 8.7° Cobb, over one year (12.3 ± 3.5 months) was observed in our group, together with motor function improvements. A relation between curve progression and motor skill improvement was observed.

Conclusions: The intervention prevented scoliosis progression in our group. The achievement of functional motor improvements could enable better body segment control and muscle balancing, with a protective effect on scoliosis progression. The intervention was effective for individuals with RTT across various ages and severity levels. Individual characteristics of each participant and the details of their activity program are described.

Keywords: Rett syndrome; home exercise program; motor skills; physical therapy modalities; scoliosis; telerehabilitation.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Visual explanation of the method used to measure the Cobb’s angle. Upper and lower end vertebra endplate lines (UEVEL; LEVEL).
Figure 2
Figure 2
Cobb’s angles of each participant at T1 and T2. Gray arrow (participant no. 8) represents the absence of scoliosis at T2.
Figure 3
Figure 3
Participant no. 8′s X-rays collected before (a) and after (b) the intervention. She was 6.5 years old at T1. At baseline, she could walk for more than 10 steps supported by one hand and independently stand for 30 s. Lack of efficient balance reaction was recognized at T1. Therefore, her program included intensive balance training and asymmetrical posture maintenance. At the end of the intervention, she could walk for more than 10 steps and stand for more than one minute independently. An improvement of 10° Cobb was recognized at T2.
Figure 4
Figure 4
Participant no. 11′s radiographs collected before (a) and after (b) the intervention. She was 31.6 years old at T1 and used to sit with trunk supported for most of her waking hours. She was able to stand and walk only with significant support given at the trunk from behind. During the intervention, she started a daily program of unsupported asymmetrical sitting, walking on a treadmill, and overcorrecting passive posture maintenance. At the end of the intervention, she was able to walk more than 10 steps and stand for more than one minute with support given to the distal section of both hands. An improvement of 11° Cobb was recognized at T2.

References

    1. Amir R.E., Van den Veyver I.B., Wan M., Tran C.Q., Francke U., Zoghbi H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 1999;23:185–188. doi: 10.1038/13810.
    1. Fombonne E., Simmons H., Ford T., Meltzer H., Goodman R. Prevalence of pervasive developmental disorders in the British nationwide survey of child mental health. Int. Rev. Psychiatry. 2003;15:158–165. doi: 10.1080/0954026021000046119.
    1. Skjeldal O.H., Von Tetzchner S., Aspelund F., Herder G.A., Lofterød B. Rett syndrome: Geographic variation in prevalence in Norway. Brain Dev. 1997;19:258–261. doi: 10.1016/S0387-7604(97)00572-X.
    1. Pini G., Milan M., Zappella M. Rett syndrome in Northern Tuscany (Italy): Family tree studies. Clin. Genet. 1996;50:486–490. doi: 10.1111/j.1399-0004.1996.tb02718.x.
    1. Logan S.W., Huang H.H., Stahlin K., Galloway J.C. Modified ride-on car for mobility and socialization: Single-case study of an infant with down syndrome. Pediatr. Phys. Ther. 2014;26:418–4269. doi: 10.1097/PEP.0000000000000070.
    1. Hagberg B., Witt-Engerström I., Opitz J.M., Reynolds J.F. Rett Syndrome: A suggested staging system for describing impairment profile with increasing age towards adolescence. Am. J. Med. Genet. 1986;25:47–59. doi: 10.1002/ajmg.1320250506.
    1. Bassett G.S., Tolo V.T. the Incidence and Natural History of Scoliosis in Rett Syndrome. Dev. Med. Child Neurol. 1990;32:963–966. doi: 10.1111/j.1469-8749.1990.tb08118.x.
    1. Ager S., Downs J., Fyfe S., Leonard H. Parental experiences of scoliosis management in Rett syndrome. Disabil. Rehabil. 2009;31:1917–1924. doi: 10.1080/09638280902846392.
    1. Ager S., Fyfe S., Christodoulou J., Jacoby P., Schmitt L., Leonard H. Predictors of scoliosis in Rett syndrome. J. Child Neurol. 2006;21:809–813. doi: 10.1177/08830738060210091501.
    1. Riise R., Brox J.I., Sorensen R., Skjeldal O.H. Spinal deformity and disability in patients with Rett syndrome. Dev. Med. Child Neurol. 2011;53:653–657. doi: 10.1111/j.1469-8749.2011.03935.x.
    1. Lidström J., Stokland E., Hagberg B. Scoliosis in rett syndrome clinical and biological aspects. Spine. 1994;19:1632–1635. doi: 10.1097/00007632-199407001-00013.
    1. Downs J., Bergman A., Carter P., Anderson A., Palmer G.M., Roye D., Van Bosse H., Bebbington A., Larsson E.L., Smith B.G., et al. Guidelines for management of scoliosis in rett syndrome patients based on expert consensus and clinical evidence. Spine. 2009;34:E607–E617. doi: 10.1097/BRS.0b013e3181a95ca4.
    1. Percy A.K., Lee H.S., Neul J.L., Lane J.B., Skinner S.A., Geerts S.P., Annese F., Graham J., McNair L., Motil K.J., et al. Profiling scoliosis in rett syndrome. Pediatr. Res. 2010;67:435–439. doi: 10.1203/PDR.0b013e3181d0187f.
    1. Huang T.J., Lubicky J.P., Hammerberg K.W. Scoliosis in Rett syndrome. Orthop. Rev. 1994;23:931–937. doi: 10.1097/01241398-198808020-00003.
    1. Killian J.T., Lane J.B., Lee H.S., Skinner S.A., Kaufmann W.E., Glaze D.G., Neul J.L., Percy A.K. Scoliosis in Rett Syndrome: Progression, Comorbidities, and Predictors. Pediatr. Neurol. 2017;70:20–25. doi: 10.1016/j.pediatrneurol.2017.01.032.
    1. Harrison D.J., Webb P.J. Scoliosis in the rett syndrome: Natural history and treatment. Brain Dev. 1990;12:154–156. doi: 10.1016/S0387-7604(12)80200-2.
    1. Downs J., Torode I., Wong K., Ellaway C., Elliott E.J., Christodoulou J., Jacoby P., Thomson M.R., Izatt M.T., Askin G.N., et al. The natural history of scoliosis in females with rett syndrome. Spine. 2016;41:856–863. doi: 10.1097/BRS.0000000000001399.
    1. Neul J.L., Fang P., Barrish J., Lane J., Caeg E.B., Smith E.O., Zoghbi H., Percy A., Glaze D.G. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008;70:1313–1321. doi: 10.1212/01.wnl.0000291011.54508.aa.
    1. Mehta J.S., Gibson M.J. The Treatment of Neuromuscular Scoliosis. Curr. Orthop. 2003;17:313–321. doi: 10.1016/S0268-0890(03)00002-1.
    1. Westerlund L.E., Gill S.S., Jarosz T.S., Abel M.F., Blanco J.S. Posterior-only unit rod instrumentation and fusion for neuromuscular scoliosis. Spine. 2001;26:1984–1989. doi: 10.1097/00007632-200109150-00008.
    1. Rocos B., Zeller R. Correcting Scoliosis in Rett Syndrome. Cureus. 2021;13:e15411. doi: 10.7759/cureus.15411.
    1. Barney C.C., Merbler A.M., Quest K., Byiers B.J., Wilcox G.L., Schwantes S., Roiko S.A., Feyma T., Beisang A., Symons F.J. A case-controlled comparison of postoperative analgesic dosing between girls with Rett syndrome and girls with and without developmental disability undergoing spinal fusion surgery. Pediatr. Anaesth. 2017;27:290–299. doi: 10.1111/pan.13066.
    1. Larsson E.L., Aaro S., Ahlinder P., Normelli H., Tropp H., Öberg B. Long-term follow-up of functioning after spinal surgery in patients with Rett syndrome. Eur. Spine J. 2009;18:506–511. doi: 10.1007/s00586-008-0876-6.
    1. Downs J., Young D., de Klerk N., Bebbington A., Baikie G., Leonard H. Impact of scoliosis surgery on activities of daily living in females with Rett syndrome. J. Pediatr. Orthop. 2009;29:369–374. doi: 10.1097/BPO.0b013e3181a53b41.
    1. Downs J., Torode I., Wong K., Ellaway C., Elliott E.J., Izatt M.T., Askin G.N., Mcphee B.I., Cundy P., Leonard H., et al. Surgical fusion of early onset severe scoliosis increases survival in Rett syndrome: A cohort study. Dev. Med. Child Neurol. 2016;58:632–638. doi: 10.1111/dmcn.12984.
    1. Kerr A.M., Webb P., Prescott R.J., Milne Y. Results of surgery for scoliosis in Rett syndrome. J. Child Neurol. 2003;18:703–708. doi: 10.1177/08830738030180101201.
    1. Roberts S.B., Tsirikos A.I. Factors influencing the evaluation and management of neuromuscular scoliosis: A review of the literature. J. Back Musculoskelet. Rehabil. 2016;29:613–623. doi: 10.3233/BMR-160675.
    1. Weiss H.R., Negrini S., Rigo M., Kotwicki T., Hawes M.C., Grivas T.B., Maruyama T., Landauer F. Indications for conservative management of scoliosis (guidelines) Scoliosis. 2006;1:5. doi: 10.1186/1748-7161-1-5.
    1. Kotwicki T., Jozwiak M. Conservative management of neuromuscular scoliosis: Personal experience and review of literature. Disabil. Rehabil. 2008;30:792–798. doi: 10.1080/09638280801889584.
    1. Karimi M., Rabczuk T. Scoliosis conservative treatment: A review of literature. J. Craniovertebral Junction Spine. 2018;9:3. doi: 10.4103/JCVJS.JCVJS_39_17.
    1. Haleem S., Nnadi C. Scoliosis: A review. Pediatr. Child Health. 2018;28:209–217. doi: 10.1016/j.paed.2018.03.007.
    1. Ferrari A., Ferrara C., Balugani M., Sassi S. Severe scoliosis in neurodevelopmental disabilities: Clinical signs and therapeutic proposals. Eur. J. Phys. Rehabil. Med. 2010;46:563–579.
    1. Downs J., Torode I., Ellaway C., Jacoby P., Bunting C., Wong K., Christodoulou J., Leonard H. Family satisfaction following spinal fusion in Rett syndrome. Dev. Neurorehabil. 2016;19:31–37. doi: 10.3109/17518423.2014.898107.
    1. Olafsson Y., Saraste H., Al-Dabbagh Z. Brace treatment in neuromuscular spine deformity. Stud. Health Technol. Inform. 1999;59:332–335. doi: 10.1097/01241398-199905000-00017.
    1. Lotan M., Merrick J., Carmeli E. Managing scoliosis in a young child with Rett syndrome: A case study. ScientificWorldJournal. 2005;5:264–273. doi: 10.1100/tsw.2005.33.
    1. Lotan M., Downs J., Elefant C. A Pilot Study Delivering Physiotherapy Support for Rett Syndrome Using a Telehealth Framework Suitable for COVID-19 Lockdown. Dev. Neurorehabil. 2021:429–434. doi: 10.1080/17518423.2021.1914762.
    1. Romano A., Di Rosa G., Tisano A., Fabio R.A., Lotan M. Effects of a remotely supervised motor rehabilitation program for individuals with Rett syndrome at home. Disabil. Rehabil. 2021:1–11. doi: 10.1080/09638288.2021.1949398.
    1. Fabio R.A., Martinazzoli C., Antonietti A. Development and standardization of the “rars” (Rett assessment rating scale) Life Span Disabil. 2005;8:257–281.
    1. Romano A., Caprì T., Semino M., Bizzego I., Di Rosa G., Fabio R.A. Gross Motor, Physical Activity and Musculoskeletal Disorder Evaluation Tools for Rett Syndrome: A Systematic Review. Dev. Neurorehabil. 2020;23:485–501. doi: 10.1080/17518423.2019.1680761.
    1. Stahlhut M., Hill K., Bisgaard A.M., Jensen A.K., Andersen M., Leonard H., Downs J. Measurement of Sedentary Behaviors or “downtime” in Rett Syndrome. J. Child Neurol. 2017;32:1009–1013. doi: 10.1177/0883073817728861.
    1. Lor L., Hill K., Jacoby P., Leonard H., Downs J. A validation study of a modified Bouchard activity record that extends the concept of “uptime” to Rett syndrome. Dev. Med. Child Neurol. 2015;57:1137–1142. doi: 10.1111/dmcn.12838.
    1. Rodocanachi Roidi M.L., Isaias I.U., Cozzi F., Grange F., Scotti F.M., Gestra V.F., Gandini A., Ripamonti E. A New Scale to Evaluate Motor Function in Rett Syndrome: Validation and Psychometric Properties. Pediatr. Neurol. 2019;100:80–86. doi: 10.1016/j.pediatrneurol.2019.03.005.
    1. Rodocanachi Roidi M.L., Isaias I.U., Cozzi F., Grange F., Scotti F.M., Gestra V.F., Gandini A., Ripamonti E. Motor function in Rett syndrome: Comparing clinical and parental assessments. Dev. Med. Child Neurol. 2019;61:957–963. doi: 10.1111/dmcn.14109.
    1. Horng M.-H., Kuok C.-P., Fu M.-J., Lin C.-J., Sun Y.-N. Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput. Math. Methods Med. 2019;2019:6357171. doi: 10.1155/2019/6357171.
    1. Hanks S.B. Motor disabilities in the rett syndrome and physical therapy strategies. Brain Dev. 1990;12:157–161. doi: 10.1016/S0387-7604(12)80201-4.
    1. Uyanik M., Bumin G., Kayihan H. Comparison of different therapy approaches in children with Down syndrome. Pediatr. Int. 2003;45:68–73. doi: 10.1046/j.1442-200X.2003.01670.x.
    1. Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size Language and cognition: L2 influence on conceptualization of motion and event construal. View project. Trends Sport Sci. 2014;21:19–25.
    1. King B.M., Minium E.W. Statistical Reasoning in the Behavioral Sciences. 7th ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008.
    1. Ottenbacher K.J. Why Rehabilitation Research Does Not Work (As Well as We Think It Should) Arch. Phys. Med. Rehabil. 1995;76:123–129. doi: 10.1016/S0003-9993(95)80021-2.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates; New York, NY, USA: 1988.
    1. Thompson B. Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychol. Sch. 2007;44:423–432. doi: 10.1002/pits.20234.
    1. Cohen J. A power primer. Psychol. Bull. 1992;112:155–159. doi: 10.1037/0033-2909.112.1.155.
    1. Kinney A.R., Eakman A.M., Graham J.E. Novel Effect Size Interpretation Guidelines and an Evaluation of Statistical Power in Rehabilitation Research. Arch. Phys. Med. Rehabil. 2020;101:2219–2226. doi: 10.1016/j.apmr.2020.02.017.
    1. Armstrong R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014;34:502–508. doi: 10.1111/opo.12131.
    1. Keret D., Bassett G.S., Bunnell W.P., Marks H.G. Scoliosis in Rett syndrome. J. Pediatr. Orthop. 1988;8:138–142. doi: 10.1097/01241398-198803000-00003.
    1. Loder R.T., Lee C.L., Richards B.S. Orthopedic aspects of Rett syndrome: A multicenter review. J. Pediatr. Orthop. 1989;9:557–562. doi: 10.1097/01241398-198909010-00010.
    1. Lotan M., Isakov E., Merrick J. Improving functional skills and physical fitness in children with Rett syndrome. J. Intellect. Disabil. Res. 2004;48:730–735. doi: 10.1111/j.1365-2788.2003.00589.x.
    1. Lotan M., Ippolito E., Favetta M., Romano A. Skype Supervised, Individualized, Home-Based Rehabilitation Programs for Individuals With Rett Syndrome and Their Families—Parental Satisfaction and Point of View. Front. Psychol. 2021;12:3995. doi: 10.3389/fpsyg.2021.720927.
    1. Lotan M., Stahlhut M., Romano A., Downs J., Elefant C. Family-Centered Telehealth Supporting Motor Skills and Activity in Individuals With Rett Syndrome. In: Stasolla F., editor. Assistive Technologies for Assessment and Recovery of Neurological Impairments. IGI Global; Hershey, PA, USA: 2022. pp. 147–171.
    1. Hagberg B., Anvret M., Wahlstrom J. Rett Syndrome—Clinical and Biological Aspects: Studies on 130 Swedish Females. MacKeith Press Press; London, UK: 1993.
    1. Bisgaard A.M., Wong K., Højfeldt A.K., Larsen J.L., Schönewolf-Greulich B., Rønde G., Downs J., Stahlhut M. Decline in gross motor skills in adult Rett syndrome; results from a Danish longitudinal study. Am. J. Med. Genet. Part A. 2021;185:3683–3693. doi: 10.1002/ajmg.a.62429.
    1. McClure M.K., Battaglia C., McClure R.J. The Relationship of Cumulative Motor Asymmetries to Scoliosis in Rett Syndrome. Am. J. Occup. Ther. 1998;52:196–204. doi: 10.5014/ajot.52.3.196.
    1. Lotan M., Merrick J., Kandel I., Morad M. Aging in persons with Rett syndrome: An updated review. ScientificWorldJournal. 2010;10:778–787. doi: 10.1100/tsw.2010.79.
    1. Lotan M., Merrick J. Rett Syndrome: Therapeutic Interventions. Nova Science Publishers Inc.; Hauppauge, NY, USA: 2011.

Source: PubMed

3
Předplatit