Effects of high-frequency transcranial magnetic stimulation on functional performance in individuals with incomplete spinal cord injury: study protocol for a randomized controlled trial

Amanda Vitória Lacerda de Araújo, Valéria Ribeiro Nogueira Barbosa, Gilma Serra Galdino, Felipe Fregni, Thais Massetti, Sara Lynn Fontes, Danilo de Oliveira Silva, Talita Dias da Silva, Carlos Bandeira de Mello Monteiro, James Tonks, Fernando Henrique Magalhães, Amanda Vitória Lacerda de Araújo, Valéria Ribeiro Nogueira Barbosa, Gilma Serra Galdino, Felipe Fregni, Thais Massetti, Sara Lynn Fontes, Danilo de Oliveira Silva, Talita Dias da Silva, Carlos Bandeira de Mello Monteiro, James Tonks, Fernando Henrique Magalhães

Abstract

Background: Repetitive transcranial magnetic stimulation (rTMS) has been investigated as a new tool in neurological rehabilitation of individuals with spinal cord injury (SCI). However, due to the inconsistent results regarding the effects of rTMS in people with SCI, a randomized controlled double-blind crossover trial is needed to clarify the clinical utility and to assess the effect size of rTMS intervention in this population. Therefore, this paper describes a study protocol designed to investigate whether the use of rTMS can improve the motor and sensory function, as well as reduce spasticity in patients with incomplete SCI.

Methods: A double-blind randomized sham-controlled crossover trial will be performed by enrolling 20 individuals with incomplete SCI. Patients who are at least six months post incomplete SCI (aged 18-60 years) will be recruited through referral by medical practitioners or therapists. Individuals will be randomly assigned to either group 1 or group 2 in a 1:1 ratio, with ten individuals in each group. The rTMS protocol will include ten sessions of high-frequency rTMS (5 Hz) over the bilateral lower-limb motor area positioned at the vertex (Cz). Clinical evaluations will be performed at baseline and after rTMS active and sham.

Discussion: rTMS has produced positive results in treating individuals with physical impairments; thus, it might be promising in the SCI population. The results of this study may provide new insights to motor rehabilitation thereby contributing towards the better usage of rTMS in the SCI population.

Trial registration: ClinicalTrials.gov, NCT02899637 . Registered on 25 August 2016.

Keywords: Incomplete spinal cord injury; Motor rehabilitation; Non-invasive brain stimulation; Plasticity; Repetitive transcranial magnetic stimulation.

Conflict of interest statement

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart for the rTMS study protocol. The participants will be selected and the eligibility assessment will be applied. They will then be randomized and allocated to group 1 (starting with rTMS-active) or group 2 (starting with rTMS-sham). Five sessions of rTMS-active and sham will be applied to participants in each group over one week, with a washout period (two weeks). Assessments will be before and after each intervention period (i.e. sham and active) using the motor and sensory scales, spasticity scale, and surface electromyography
Fig. 2
Fig. 2
SPIRIT figure. Description of the rTMS study protocol

References

    1. Calabró RS, Naron A, Leo A, Bramanti P. Usefulness of robotic gait training plus neuromodulation in chronic spinal cord injury: a case report. J Spinal Cord Med. 2017;40(1):118–21. doi: 10.1080/10790268.2016.1153275.
    1. Fechio MB, Pacheco KMB, Kaihami HN, Alves VLR. A repercussão da lesão medular na identidade do sujeito. Acta Fisiátrica. 2009;16:38–42. doi: 10.5935/0104-7795.20090005.
    1. Hill MR, Noonan VK, Sakakibara BM, Miller WC. SCIRE Research Team. Quality of life instruments and definitions in individuals with spinal cord injury: a systematic review. Spinal Cord. 2009;48(6):438–50. doi: 10.1038/sc.2009.164.
    1. Herrmann KH, Kirchberger I, Biering-Sorensen F, Cieza A. Differences in functioning of individuals with tetraplegia and paraplegia according to the International Classification of Functioning, Disability and Health (ICF) Spinal Cord. 2011;49(4):534–43. doi: 10.1038/sc.2010.156.
    1. Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2001;2(4):263–73. doi: 10.1038/35067570.
    1. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45(3):190–205. doi: 10.1038/sj.sc.3102007.
    1. Oudega M, Perez MA. Corticospinal reorganization after spinal cord injury. J Physiol. 2012;590(16):3647–63. doi: 10.1113/jphysiol.2012.233189.
    1. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56. doi: 10.1016/S1474-4422(03)00321-1.
    1. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39. doi: 10.1016/j.clinph.2009.08.016.
    1. Tazoe T, Perez MA. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch Phys Med Rehabil. 2015;96(Suppl 4):145–55. doi: 10.1016/j.apmr.2014.07.418.
    1. Ridding MC, Rothwell JC. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci. 2007;8(7):559–67. doi: 10.1038/nrn2169.
    1. Bunday KL, Perez MA. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr Biol. 2012;22(24):2355–61. doi: 10.1016/j.cub.2012.10.046.
    1. Kumru H, Murillo N, Samso JV, Valls-Sole J, Edwards D, Pelayo R, et al. Reduction of spasticity with repetitive transcranial magnetic stimulation in patients with spinal cord injury. Neurorehabil Neural Repair. 2010;24(5):4335–441. doi: 10.1177/1545968309356095.
    1. Benito J, Kumru H, Murillo N, Costa U, Medina J, Tormos JM, et al. Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation. Top Spinal Cord Inj Rehabil. 2012;18(2):106–12. doi: 10.1310/sci1802-106.
    1. Belci M, Catley M, Husain M, Frankel HL, Davey NJ. Magnetic brain stimulation can improve clinical outcome in incomplete spinal cord injured patients. Spinal Cord. 2004;42:417–9. doi: 10.1038/sj.sc.3101613.
    1. Kumru H, Benito-Penalva J, Valls-Sole J, Murillo N, Tormos JM, Flores C, et al. Placebo-controlled study of rTMS combined with Lokomat® gait training for treatment in subjects with motor incomplete spinal cord injury. Exp Brain Res. 2016;234(12):3447–55. doi: 10.1007/s00221-016-4739-9.
    1. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di lorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiology. 2015;126(6):1071–107. doi: 10.1016/j.clinph.2015.02.001.
    1. Gunduz A, Kumru H, Pascual-Leone A. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations. Neural Regen Res. 2014;9(7):712–8. doi: 10.4103/1673-5374.131574.
    1. Gentner R, Wankerl K, Reinsberger C, Zeller D, Classen J. Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex. 2008;18(9):2046–53. doi: 10.1093/cercor/bhm239.
    1. Iezzi E, Conte A, Suppa A, Agostino R, Dinapoli L, Scontrini A, et al. Phasic voluntary movements reverse the aftereffects of subsequent theta-burst stimulation in humans. J Neurophysiol. 2008;100(4):2070–6. doi: 10.1152/jn.90521.2008.
    1. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol. 2010;588(13):2291–304. doi: 10.1113/jphysiol.2010.190314.
    1. Ellaway PH, Vasquez N, Craggs M. Induction of central nervous system plasticity by repetitive transcranial magnetic stimulation to promote sensorimotor recovery in incomplete spinal cord injury. Front Integr Neurosci. 2014;8:12. doi: 10.3389/fnint.2014.00042.
    1. Nardone R, Holler Y, Thomschewski A, Brigo F, Orioli A, Holler P, et al. rTMS modulates reciprocal inhibition in patients with traumatic spinal cord injury. Spinal Cord. 2014;52(11):831–5. doi: 10.1038/sc.2014.136.
    1. Kuppuswamy A, Balasubramian AV, Maksimovic R, Mathias CJ, Gall A, Craggs MD, et al. Action of 5 Hz repetitive transcranial magnetic stimulation on sensory, motor and autonomic function in human spinal cord injury. Clin Neurophysiol. 2011;122(12):2452–61. doi: 10.1016/j.clinph.2011.04.022.
    1. Lammertse D, Tuszynski MH, Steeves JD, Curt A, Fawcett JW, Rask C, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial design. Spinal Cord. 2007;45(3):232–42. doi: 10.1038/sj.sc.3102010.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Baeken CL, Vanderhasselt MA, Remue J, Herremans S, Vanderbruggen N, Zeeuws D, et al. Intensive HF-rTMS treatment in refractory medication-resistant unipolar depressed patients. J Affect Disord. 2013;151(2):625–31. doi: 10.1016/j.jad.2013.07.008.
    1. Lee J, Thumbikat P. Pathophysiology, presentation and management of spinal cord injury. Surgery. 2015;33(6):238–47.
    1. MacDonald JW, Sadowsky C. Spinal-cord injury. Lancet. 2002;359(9304):417–25. doi: 10.1016/S0140-6736(02)07603-1.
    1. Monif M, Seneviratne U. Clinical factors associated with the yield of routine outpatient scalp electroencephalograms: A retrospective analysis from a tertiary hospital. J Clin Neurosci. 2017;45:110–14. doi: 10.1016/j.jocn.2017.08.014.
    1. Smith S. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry. 2005;76 Suppl 2:ii2–7.
    1. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2010. .
    1. Khedr EM, Farweez HM, Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol. 2003;10(5):567–72. doi: 10.1046/j.1468-1331.2003.00649.x.
    1. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) Clin Neurophysiol. 2014;125(11):2150–206. doi: 10.1016/j.clinph.2014.05.021.
    1. Duecker F, Sack AT. Rethinking the role of sham TMS. Front Psychol. 2015;6:210. doi: 10.3389/fpsyg.2015.00210.
    1. Yilmaz B, Kesikburun S, Yasar E, Tan AK. The effect of repetitive transcranial magnetic stimulation on refractory neuropathic pain in spinal cord injury. J Spinal Cord Med. 2014;37(4):397–400. doi: 10.1179/2045772313Y.0000000172.
    1. Pitcher D, Garrido L, Walsh V, Duchaine BC. Transcranial magnetic stimulation disrupts the perception and embodiment of facial expressions. J Neurosci. 2008;28(36):8929–33. doi: 10.1523/JNEUROSCI.1450-08.2008.
    1. Jetté F, Côté I, Meziane HB, Mercier C. Effect of single-session repetitive transcranial magnetic stimulation applied over the hand versus leg motor area on pain after spinal cord injury. Neurorehabil Neural Repair. 2013;27(7):636–43. doi: 10.1177/1545968313484810.
    1. Ji SG, Cha HG, Kim MK. Effects of repetitive transcranial magnetic stimulation on motor recovery in lower extremities of subacute stage incomplete spinal cord injury patients: a randomized controlled trial. J Magnetics. 2015;20(4):427–31. doi: 10.4283/JMAG.2015.20.4.427.
    1. Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I. Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res. 1997;113:24–32. doi: 10.1007/BF02454139.
    1. D’Ostilio K, Goetz SM, Hannah R, Ciocca M, Chieffo R, Jui-Cheng A, et al. Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiology. 2016;127(1):675–83. doi: 10.1016/j.clinph.2015.05.017.
    1. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A. International standards for neurological classification of spinal cord injury (Revised 2011) J Spinal Cord Med. 2011;34(6):535–46. doi: 10.1179/204577211X13207446293695.
    1. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
    1. Sullivan KJ, Tilson JK, Cen SY, Rose DK, Hershberg J, Correa A, et al. Fugl-Meyer assessment of sensorimotor function after stroke: standardized training procedure for clinical practice and clinical trials. Stroke. 2011;42(2):427–32. doi: 10.1161/STROKEAHA.110.592766.
    1. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40. doi: 10.1177/154596802401105171.
    1. Hermes HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyog Kinesiol. 2000;10:361–74. doi: 10.1016/S1050-6411(00)00027-4.
    1. Ashworth B. Preliminary trial of carisoprodal in multiple sclerosis. Practioner. 1964;192:540–2.
    1. Ghotbi N, Ansari NN, Naghdi S, Hasson S. Measurement of lower-limb muscle spasticity: Intrarater reliability of Modified Modified Ashworth Scale. J Rehabil Res Dev. 2011;48(1):83–8. doi: 10.1682/JRRD.2010.02.0020.
    1. Folstein MF, Folstein SE, Mchugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. doi: 10.1016/0022-3956(75)90026-6.
    1. Brucki SMD, Nitrini R, Caramelli P, Bertolucci PHF, Okamoto IH. Suggestions for utilization of the mini-mental state examination in Brazil. Arq Neuro-Psiquiatr. 2003;61:3B. doi: 10.1590/S0004-282X2003000500014.
    1. Cockrell JR, Folstein MF. Mini-Mental State Examination. Princ Pract Geriatric Psych. 2002;2:140–41.
    1. Bertolucci PHF, Brucki SMD, Campacci SR, Juliano Y. The Mini-Mental State Examination in an outpatient population: influence of literacy. Arq Neuro-Psiquiatr. 1994;52:1. doi: 10.1590/S0004-282X1994000100001.
    1. Williams JBW. Standardizing the Hamilton Depression Rating Scale: past, present, and future. Eur Arch Psychiatry Clin Neurosci. 2001;251 suppl 2:II/6–12. doi: 10.1007/BF03035120.
    1. Gallucci NJ, Campos JMS, Hübner CK. Escala de Depressão de Hamilton (HAM-D): revisão dos 40 anos de sua utilização. Rev Fac Ciênc Méd. 2001;3(1):10–4.
    1. Babiloni C, Pizzella V, Gratta CD, Ferretti A, Romani GL. Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. Int Rev Neurobiol. 2009;86:67–80. doi: 10.1016/S0074-7742(09)86005-4.
    1. Kannathal N, Choo ML, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed. 2005;80(3):187–94. doi: 10.1016/j.cmpb.2005.06.012.
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. doi: 10.3758/BF03193146.
    1. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1–16. doi: 10.1016/S0168-5597(97)00096-8.
    1. Gomes-Osman J, Field-Fote EC. Improvements in hand function in adults with chronic tetraplegia following a multiday 10-Hz repetitive transcranial magnetic stimulation intervention combined with repetitive task practice. J Neurol Phys Ther. 2015;39(1):23–30. doi: 10.1097/NPT.0000000000000062.
    1. Burr JF, Shephard RJ, Zehr EP. Physical activity after stroke and spinal cord injury: evidence-based recommendations on clearance for physical activity and exercise. Can Fam Physician. 2012;58(11):1236–9.
    1. Yang H, Liu CC, Wang CY, Zhang Q, An J, Zhang L, et al. Therapeutical strategies for spinal cord injury and a promising autologous astrocyte-based therapy using efficient reprogramming techniques. Mol Neurobiol. 2016;53(5):2826–42. doi: 10.1007/s12035-015-9157-7.
    1. Valero-Cabré A, Oliveri M, Gangitano M, Pascual-Leone A. Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic stimulation of the primary motor cortex in humans. Neuroreport. 2001;12(17):3845–8. doi: 10.1097/00001756-200112040-00048.
    1. Potter-Baker KA, Janini DP, Frost FS, Chabra P, Varnerin N, Cunningham DA, et al. Reliability of TMS metrics in patients with chronic incomplete spinal cord injury. Spinal Cord. 2016;54(11):980–90. doi: 10.1038/sc.2016.47.
    1. Resolução n° 466, de 12 de dezembro de 2012. Ministério da Saúde. . Accessed 03 April 2017.
    1. Declaration of Helsinki. Somerset West, South Africa: 48th General Assembly-WMA. 6 October 2000. World Medical Association. . Accessed 02 April 2017.
    1. Declaration of Helsinki. Edinburgh, Scotland: 52nd General Assembly-WMA. 13 October 2000. World Medical Association. . Accessed 03 April 2017.

Source: PubMed

3
Předplatit