Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

Wouter J F M Jurgens, Maikel J Oedayrajsingh-Varma, Marco N Helder, Behrouz Zandiehdoulabi, Tabitha E Schouten, Dirk J Kuik, Marco J P F Ritt, Florine J van Milligen, Wouter J F M Jurgens, Maikel J Oedayrajsingh-Varma, Marco N Helder, Behrouz Zandiehdoulabi, Tabitha E Schouten, Dirk J Kuik, Marco J P F Ritt, Florine J van Milligen

Abstract

The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to harvest these SVF cells and give them back to the patient within a single surgical procedure, thereby avoiding lengthy and costly in vitro culturing steps. However, this requires SVF-isolates to contain sufficient ASCs capable of differentiating into the desired cell lineage. We have investigated whether the yield and function of ASCs are affected by the anatomical sites most frequently used for harvesting adipose tissue: the abdomen and hip/thigh region. The frequency of ASCs in the SVF of adipose tissue from the abdomen and hip/thigh region was determined in limiting dilution and colony-forming unit (CFU) assays. The capacity of these ASCs to differentiate into the chondrogenic and osteogenic pathways was investigated by quantitative real-time polymerase chain reaction and (immuno)histochemistry. A significant difference (P = 0.0009) was seen in ASC frequency but not in the absolute number of nucleated cells between adipose tissue harvested from the abdomen (5.1 +/- 1.1%, mean +/- SEM) and hip/thigh region (1.2 +/- 0.7%). However, within the CFUs derived from both tissues, the frequency of CFUs having osteogenic differentiation potential was the same. When cultured, homogeneous cell populations were obtained with similar growth kinetics and phenotype. No differences were detected in differentiation capacity between ASCs from both tissue-harvesting sites. We conclude that the yield of ASCs, but not the total amount of nucleated cells per volume or the ASC proliferation and differentiation capacities, are dependent on the tissue-harvesting site. The abdomen seems to be preferable to the hip/thigh region for harvesting adipose tissue, in particular when considering SVF cells for stem-cell-based therapies in one-step surgical procedures for skeletal tissue engineering.

Figures

Fig. 1
Fig. 1
Effect of adipose-tissue-harvesting site on the frequency of adipose-derived stem cells (ASCs) in the stromal vascular fraction (SVF). After isolation of the SVF from adipose tissue of both tissue-harvesting sites, the frequency of ASCs in the SVF isolates was determined by using: (a) a limiting dilution assay (LD) and (b) a colony-forming unit (CFU) assay (CFU-F), with similar results. When combined (c), a significant difference was detected in ASC frequency between adipose tissue harvested from the abdomen and adipose tissue harvested from the hip/thigh region (P-values: a limiting dilution: P = 0.003, b colony-forming unit: P = 0.05, c combined: P = 0.0009)
Fig. 2
Fig. 2
Effect of adipose-tissue-harvesting site on the osteogenic diffentiation capacity of CFU from the abdomen or hip/thigh regions. No significant difference is apparent in the CFU-alkaline phosphatase (CFU-ALP) frequency from the abdomen and hip/thigh region when corrected for CFU-fibroblast (CFU-F).
Fig. 3
Fig. 3
Effect of the adipose-tissue-harvesting site on growth kinetics of ASCs in vitro. a Growth kinetics of ASCs of a representative donor when adipose tissue was harvested from the abdomen. b Growth kinetics of ASCs when adipose tissue was harvested from the hip/thigh region. c Population doubling time was calculated from the exponential growing phase of the cells. There was no significant difference in population doubling time of ASCs from the abdomen and hip/thigh region (P = 0.78, independent Student t-test).
Fig. 4
Fig. 4
Effect of adipose-tissue-harvesting site on the osteogenic differentiation of cultured ASCs in vitro. a–cRUNX-2 (runt-related transcription factor 2; P = 0.002), COL1α1 (collagen type Ia; P = 0.024), and OPN (osteopontin; P = 0.38) gene expression was measured after 0, 4, and 7 days (d) of osteogenic induction, by using quantitative real-time polymerase chain reaction (qRT-PCR). No significant differences were detected in osteogenic gene expression between ASCs derived from the abdomen and ASCs derived from the hip/thigh region, at all three time points tested. d ALP activity was significantly increased after 14 days in the osteogenically stimulated cells (stim) compared with that in unstimulated cells (con; P = 0.047). No statistically significant difference was apparent in ALP activity between ASCs derived from abdominal fat and ASCs from hip/thigh fat. e–g Von Kossa staining of ASCs from abdomen (e) and hip/thigh region (f) after 21 days of culture in osteogenic medium and in control medium (g), showing mineralized matrix visible as black spots.
Fig. 5
Fig. 5
Effect of the tissue-harvesting site on the chondrogenic differentiation of cultured ASCs in vitro. a Both abdomen (lane 1) and hip/thigh region (lane 2) display COL2B mRNA. Under nonchondrogenic conditions, no COL2B could be detected (lane 3). b, c Aggrecan (AGG; P = 0.041) and collagen 10A (Col10a; P = 0.024) gene expression, respectively, was up-regulated after 7 days (d), as measured by qRT-PCR. No significant differences were detected in chondrogenic gene expression between ASCs derived from the abdomen and ASCs derived from the hip/thigh region, at all three time points tested. d, f Cartilaginous matrix expression was visualized in both tissue-harvesting sites by staining proteoglycans (Alcian blue) and COL2 (Col2-II6B3 antibody), respectively. e At higher magnification, the ASC nodules resembled cartilage-like tissue, composed of spherical cells surrounded by lacunae and lying in a proteoglycan-rich extracellular matrix.

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1046/j.1432-0436.2001.680412.x', 'is_inner': False, 'url': 'https://doi.org/10.1046/j.1432-0436.2001.680412.x'}, {'type': 'PubMed', 'value': '11776477', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11776477/'}]}
    2. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1080/14653240310004539', 'is_inner': False, 'url': 'https://doi.org/10.1080/14653240310004539'}, {'type': 'PubMed', 'value': '14985162', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14985162/'}]}
    2. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, Laney T du, Sen A, Willingmyre GD, Gimble JM (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12708651', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12708651/'}]}
    2. Barry FP (2003) Mesenchymal stem cell therapy in joint disease. Novartis Found Symp 249:86–96
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1159/000071150', 'is_inner': False, 'url': 'https://doi.org/10.1159/000071150'}, {'type': 'PubMed', 'value': '12835573', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12835573/'}]}
    2. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1172/JCI111075', 'is_inner': False, 'url': 'https://doi.org/10.1172/jci111075'}, {'type': 'PMC', 'value': 'PMC370403', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc370403/'}, {'type': 'PubMed', 'value': '6630508', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/6630508/'}]}
    2. Djian P, Roncari AK, Hollenberg CH (1983) Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. J Clin Invest 72:1200–1208
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11255409', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11255409/'}]}
    2. Dresser R (2001) Ethical issues in embryonic stem cell research. JAMA 285:1439–1440
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1006/bbrc.2001.6270', 'is_inner': False, 'url': 'https://doi.org/10.1006/bbrc.2001.6270'}, {'type': 'PubMed', 'value': '11785965', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11785965/'}]}
    2. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F (2002) Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290:763–769
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.biomaterials.2006.04.013', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.biomaterials.2006.04.013'}, {'type': 'PubMed', 'value': '16720040', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16720040/'}]}
    2. Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27:4573–4580
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1242/jcs.00369', 'is_inner': False, 'url': 'https://doi.org/10.1242/jcs.00369'}, {'type': 'PubMed', 'value': '12665563', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12665563/'}]}
    2. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15299271', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15299271/'}]}
    2. Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM (2004) Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41:389–399
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/107632701753337681', 'is_inner': False, 'url': 'https://doi.org/10.1089/107632701753337681'}, {'type': 'PubMed', 'value': '11749730', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11749730/'}]}
    2. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7:729–741
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/sj.ijo.0802314', 'is_inner': False, 'url': 'https://doi.org/10.1038/sj.ijo.0802314'}, {'type': 'PubMed', 'value': '12861228', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12861228/'}]}
    2. Harmelen V van, Skurk T, Rohrig K, Lee YM, Halbleib M, Aprath-Husmann I, Hauner H (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.metabol.2003.11.012', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.metabol.2003.11.012'}, {'type': 'PubMed', 'value': '15131769', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15131769/'}]}
    2. Harmelen V van, Rohrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53:632–637
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1159/000081088', 'is_inner': False, 'url': 'https://doi.org/10.1159/000081088'}, {'type': 'PubMed', 'value': '15550755', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15550755/'}]}
    2. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, Takase B, Ishizuka T, Kikuchi M, Fujikawa K, Ishihara M (2004) Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 178:2–12
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2040549', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2040549/'}]}
    2. Hauner H, Entenmann G (1991) Regional variation of adipose differentiation in cultured stromal-vascular cells from the abdominal and femoral adipose tissue of obese women. Int J Obes 15:121–126
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '3235057', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/3235057/'}]}
    2. Hauner H, Wabitsch M, Pfeiffer EF (1988) Differentiation of adipocyte precursor cells from obese and nonobese adult women and from different adipose tissue sites. Horm Metab Res Suppl 19:35–39
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/ten.2006.0165', 'is_inner': False, 'url': 'https://doi.org/10.1089/ten.2006.0165'}, {'type': 'PubMed', 'value': '17518736', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17518736/'}]}
    2. Helder MN, Knippenberg M, Klein-Nulend J, Wuisman PI (2007) Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng 8:1799–1808
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/01.PRS.0000101063.27008.E1', 'is_inner': False, 'url': 'https://doi.org/10.1097/01.prs.0000101063.27008.e1'}, {'type': 'PubMed', 'value': '14758221', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14758221/'}]}
    2. Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, Benhaim P (2004) Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg 113:585–594
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1097-4644(199702)64:2<295::aid-jcb12>3.0.co;2-i'}, {'type': 'PubMed', 'value': '9027589', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9027589/'}]}
    2. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/en.138.8.3181', 'is_inner': False, 'url': 'https://doi.org/10.1210/en.138.8.3181'}, {'type': 'PubMed', 'value': '9231766', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9231766/'}]}
    2. Lacasa D, Garcia E, Henriot D, Agli B, Giudicelli Y (1997) Site-related specificities of the control by androgenic status of adipogenesis and mitogen-activated protein kinase cascade/c-fos signaling pathways in rat preadipocytes. Endocrinology 138:3181–3186
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/1097-0177(2000)9999:9999<::AID-DVDY1037>3.0.CO;2-7', 'is_inner': False, 'url': 'https://doi.org/10.1002/1097-0177(2000)9999:9999<::aid-dvdy1037>3.0.co;2-7'}, {'type': 'PubMed', 'value': '10974671', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10974671/'}]}
    2. Lennon DP, Haynesworth SE, Arm DM, Baber MA, Caplan AI (2000) Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev Dyn 219:50–62
    1. None
    2. Lowry OH (1955) Micromethods for the assay of enzyme. II Specific procedure. Alkaline phosphatase. Methods Enzymol 4:371–372
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.44.7.855', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.44.7.855'}, {'type': 'PubMed', 'value': '7789654', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7789654/'}]}
    2. Masuzaki H, Ogawa Y, Isse N, Satoh N, Okazaki T, Shigemoto M, Mori K, Tamura N, Hosoda K, Yoshimasa Y (1995) Human obese gene expression. Adipocyte-specific expression and regional differences in the adipose tissue. Diabetes 44:855–858
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1634/stemcells.2005-0234', 'is_inner': False, 'url': 'https://doi.org/10.1634/stemcells.2005-0234'}, {'type': 'PubMed', 'value': '16322640', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16322640/'}]}
    2. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/en.2003-0537', 'is_inner': False, 'url': 'https://doi.org/10.1210/en.2003-0537'}, {'type': 'PubMed', 'value': '12959998', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12959998/'}]}
    2. Monjo M, Rodriguez AM, Palou A, Roca P (2003) Direct effects of testosterone, 17 beta-estradiol, and progesterone on adrenergic regulation in cultured brown adipocytes: potential mechanism for gender-dependent thermogenesis. Endocrinology 144:4923–4930
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/art.10118', 'is_inner': False, 'url': 'https://doi.org/10.1002/art.10118'}, {'type': 'PubMed', 'value': '11920406', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11920406/'}]}
    2. Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46:704–713
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jor.20200', 'is_inner': False, 'url': 'https://doi.org/10.1002/jor.20200'}, {'type': 'PubMed', 'value': '16779832', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16779832/'}]}
    2. Mwale F, Stachura D, Roughley P, Antoniou J (2006) Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res 24:1791–1798
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jor.1100090402', 'is_inner': False, 'url': 'https://doi.org/10.1002/jor.1100090402'}, {'type': 'PubMed', 'value': '2045973', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2045973/'}]}
    2. Nakahara H, Goldberg VM, Caplan AI (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9:465–476
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1080/14653240600621125', 'is_inner': False, 'url': 'https://doi.org/10.1080/14653240600621125'}, {'type': 'PubMed', 'value': '16698690', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16698690/'}]}
    2. Oedayrajsingh-Varma MJ, Ham SM van, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, Milligen FJ van (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8:166–177
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/01.prs.0000206319.80719.74', 'is_inner': False, 'url': 'https://doi.org/10.1097/01.prs.0000206319.80719.74'}, {'type': 'PMC', 'value': 'PMC4124824', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4124824/'}, {'type': 'PubMed', 'value': '16641714', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16641714/'}]}
    2. Peptan IA, Hong L, Mao JJ (2006) Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits. Plast Reconstr Surg 117:1462–1470
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/ten.2005.11.120', 'is_inner': False, 'url': 'https://doi.org/10.1089/ten.2005.11.120'}, {'type': 'PubMed', 'value': '15738667', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15738667/'}]}
    2. Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, Lieberman JR (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11:120–129
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0026-0495(85)90103-9', 'is_inner': False, 'url': 'https://doi.org/10.1016/0026-0495(85)90103-9'}, {'type': 'PubMed', 'value': '4033422', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/4033422/'}]}
    2. Pettersson P, Van R, Karlsson M, Bjorntorp P (1985) Adipocyte precursor cells in obese and nonobese humans. Metabolism 34:808–812
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11036752', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11036752/'}]}
    2. Pittenger MF, Mosca JD, McIntosh KR (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251:3–11
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1161/01.CIR.0000114522.38265.61', 'is_inner': False, 'url': 'https://doi.org/10.1161/01.cir.0000114522.38265.61'}, {'type': 'PubMed', 'value': '14734516', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/14734516/'}]}
    2. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.yexcr.2005.11.021', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.yexcr.2005.11.021'}, {'type': 'PubMed', 'value': '16386732', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16386732/'}]}
    2. Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L, Casteilla L (2005) From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res 312:727–736
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7601756', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7601756/'}]}
    2. Ramsay TG, White ME, Wolverton CK (1995) The onset of maternal diabetes in swine induces alterations in the development of the fetal preadipocyte. J Anim Sci 73:69–76
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0003-4975(02)04568-X', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0003-4975(02)04568-x'}, {'type': 'PubMed', 'value': '12645692', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12645692/'}]}
    2. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1152/ajpendo.00270.2004', 'is_inner': False, 'url': 'https://doi.org/10.1152/ajpendo.00270.2004'}, {'type': 'PubMed', 'value': '15367392', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15367392/'}]}
    2. Rodriguez-Cuenca S, Monjo M, Proenza AM, Roca P (2005) Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu. Am J Physiol Endocrinol Metab 288:E200–E207
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0026-0495(81)90174-8', 'is_inner': False, 'url': 'https://doi.org/10.1016/0026-0495(81)90174-8'}, {'type': 'PubMed', 'value': '7231183', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7231183/'}]}
    2. Roncari DA, Lau DC, Kindler S (1981) Exaggerated replication in culture of adipocyte precursors from massively obese persons. Metabolism 30:425–427
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1634/stemcells.2006-0589', 'is_inner': False, 'url': 'https://doi.org/10.1634/stemcells.2006-0589'}, {'type': 'PubMed', 'value': '17420225', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17420225/'}]}
    2. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/scd.2006.0026', 'is_inner': False, 'url': 'https://doi.org/10.1089/scd.2006.0026'}, {'type': 'PubMed', 'value': '17348807', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17348807/'}]}
    2. Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ, Ham SM van, Milligen FJ van (2007) Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 16:91–104
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jcb.240540102', 'is_inner': False, 'url': 'https://doi.org/10.1002/jcb.240540102'}, {'type': 'PubMed', 'value': '8126079', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8126079/'}]}
    2. Venter M van de, Litthauer D, Oelofsen W (1994) Catecholamine stimulated lipolysis in differentiated human preadipocytes in a serum-free, defined medium. J Cell Biochem 54:1–10
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/107632703768247377', 'is_inner': False, 'url': 'https://doi.org/10.1089/107632703768247377'}, {'type': 'PubMed', 'value': '13678446', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/13678446/'}]}
    2. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9:679–688
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/art.10767', 'is_inner': False, 'url': 'https://doi.org/10.1002/art.10767'}, {'type': 'PubMed', 'value': '12571852', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12571852/'}]}
    2. Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48:418–429
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/ten.2006.12.1891', 'is_inner': False, 'url': 'https://doi.org/10.1089/ten.2006.12.1891'}, {'type': 'PubMed', 'value': '16889519', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16889519/'}]}
    2. Zheng B, Cao B, Li G, Huard J (2006) Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng 12:1891–1901
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1089/107632701300062859', 'is_inner': False, 'url': 'https://doi.org/10.1089/107632701300062859'}, {'type': 'PubMed', 'value': '11304456', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11304456/'}]}
    2. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1091/mbc.E02-02-0105', 'is_inner': False, 'url': 'https://doi.org/10.1091/mbc.e02-02-0105'}, {'type': 'PMC', 'value': 'PMC138633', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc138633/'}, {'type': 'PubMed', 'value': '12475952', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12475952/'}]}
    2. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

Source: PubMed

3
Předplatit