Canagliflozin combined with metformin versus metformin monotherapy for endocrine and metabolic profiles in overweight and obese women with polycystic ovary syndrome: A single-center, open-labeled prospective randomized controlled trial

Jiaqi Zhang, Chuan Xing, Xiangyi Cheng, Bing He, Jiaqi Zhang, Chuan Xing, Xiangyi Cheng, Bing He

Abstract

Objectives: Canagliflozin (CANA), a kind of sodium-glucose cotransporter-2 (SGLT-2) inhibition, study in which the role of CANA monotherapy in polycystic ovary syndrome (PCOS) has been investigated, and it could become a novel option in the PCOS treatment. Nevertheless, trials focused on SGLT-2 combination therapy's efficacy, and safety in PCOS patients are limited. This randomized controlled trial compared the efficacy and safety of CANA and metformin (MET) combination therapy and MET monotherapy in endocrine and metabolic profiles of overweight and obese women with polycystic ovary syndrome (PCOS).

Methods: Fifty-one overweight or obese non-diabetic PCOS women between 18 and 40 years old were enrolled. Patients were randomly allocated to receive either CANA/MET or MET treatment. The CANA/MET group received CANA 100 mg once daily plus MET 1000 mg twice daily, while the MET group received MET 1000 mg twice daily for three months. Changes in menstrual pattern, anthropometric parameters, gonadal parameters, glucose and lipid homeostasis, and adverse events (AEs) were evaluated.

Results: Compared with the MET group, women have a significantly lower level of total testosterone (TT), area under the curve for glucose (AUCGlu), and area under the curve for insulin (AUCIns) to AUCGlu ratio in the combination group. There were no significant differences in menstrual frequency, body weight, body mass index, follicle-stimulating hormone, luteinizing hormone, free androgen index, sex hormone-binding globulin, androstenedione, fasting blood glucose, fasting insulin, AUCIns, homeostasis model assessment-insulin resistance (HOMA-IR), triglycerides, total cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1 (Apo A1), apolipoprotein B (Apo B), and APO B/A1 ratio. AEs were seen in 57.70% (15/26) and 68.00% (17/25) of patients in the CANA/MET and MET groups, respectively.

Conclusions: In overweight and obese women with PCOS, CANA and MET combination therapy may be similar to MET monotherapy in improving menstrual frequency, weight control, hyperandrogenemia, and relieving insulin resistance. CANA/MET may have more benefits in reducing TT, AUCGlu, and the AUCIns/AUCGlu ratio within three months than MET monotherapy.

Trial registration: ClinicalTrials.gov, NCT04973891.

Keywords: canagliflozin; metformin; polycystic ovary syndrome; sodium-glucose co-transporter 2 inhibitors; weight-loss.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Zhang, Xing, Cheng and He.

Figures

Figure 1
Figure 1
Patient selection flow diagram.

References

    1. Trikudanathan S. Polycystic ovarian syndrome. Med Clin North Am (2015) 99(1):221–35. doi: 10.1016/j.mcna.2014.09.003
    1. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. . Polycystic ovary syndrome. Nat Rev Dis Primers (2016) 2:16057. doi: 10.1038/nrdp.2016.57
    1. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group . Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril (2004) 81(1):19–25. doi: 10.1016/j.fertnstert.2003.10.004
    1. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril (2016) 106(1):6–15. doi: 10.1016/j.fertnstert.2016.05.003
    1. Moghetti P, Tosi F. Insulin resistance and PCOS: chicken or egg? J Endocrinol Invest (2021) 44(2):233–44. doi: 10.1007/s40618-020-01351-0
    1. Hoeger KM. Obesity and lifestyle management in polycystic ovary syndrome. Clin Obstet Gynecol (2007) 50(1):277–94. doi: 10.1097/GRF.0b013e31802f54c8
    1. Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism (2019) 92:108–20. doi: 10.1016/j.metabol.2018.11.002
    1. Moran LJ, Norman RJ, Teede HJ. Metabolic risk in PCOS: phenotype and adiposity impact. Trends Endocrinol Metab (2015) 26(3):136–43. doi: 10.1016/j.tem.2014.12.003
    1. Baillargeon JP, Nestler JE. Commentary: polycystic ovary syndrome: a syndrome of ovarian hypersensitivity to insulin? J Clin Endocrinol Metab (2006) 91(1):22–4. doi: 10.1210/jc.2005-1804
    1. Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab (2020) 35:100937. doi: 10.1016/j.molmet.2020.01.001
    1. Geffner ME, Kaplan SA, Bersch N, Golde DW, Landaw EM, Chang RJ. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion. Fertil Steril (1986) 45(3):327–33. doi: 10.1016/S0015-0282(16)49211-3
    1. Caldwell ASL, Edwards MC, Desai R, Jimenez M, Gilchrist RB, Handelsman DJ, et al. . Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proc Natl Acad Sci USA (2017) 114(16):E3334–e3343. doi: 10.1073/pnas.1616467114
    1. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev (2012) 33(6):981–1030. doi: 10.1210/er.2011-1034
    1. Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E, et al. . American association of clinical endocrinologists, american college of endocrinology, and androgen excess and pcos society disease state clinical review: Guide to the best practices in the evaluation and treatment of polycystic ovary syndrome–part 1. Endocr Pract (2015) 21(11):1291–300. doi: 10.4158/EP15748.DSC
    1. Palomba S. Is fertility reduced in ovulatory women with polycystic ovary syndrome? an opinion paper. Hum Reprod (2021) 36(9):2421–8. doi: 10.1093/humrep/deab181
    1. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update (2015) 21(5):575–92. doi: 10.1093/humupd/dmv029
    1. Palomba S, Daolio J, La Sala GB. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab (2017) 28(3):186–98. doi: 10.1016/j.tem.2016.11.008
    1. Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update (2021) 27(3):584–618. doi: 10.1093/humupd/dmaa051
    1. Walter K. What is polycystic ovary syndrome? Jama (2022) 327(3):294. doi: 10.1001/jama.2021.19776
    1. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. . Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril (2018) 110(3):364–79. doi: 10.1016/j.fertnstert.2018.05.004
    1. Palomba S, Falbo A, Zullo F, Orio F., Jr. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. Endocr Rev (2009) 30(1):1–50. doi: 10.1210/er.2008-0030
    1. Bennett WL, Aschmann HE, Puhan MA, Robbins CW, Bayliss EA, Wilson R, et al. . A benefit-harm analysis of adding basal insulin vs. sulfonylurea to metformin to manage type II diabetes mellitus in people with multiple chronic conditions. J Clin Epidemiol (2019) 113:92–100. doi: 10.1016/j.jclinepi.2019.03.014
    1. Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol (2010) 162(2):193–212. doi: 10.1530/EJE-09-0733
    1. Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod (1998) 13(6):1502–5. doi: 10.1093/humrep/13.6.1502
    1. Kuchenbecker WK, Groen H, van Asselt SJ, Bolster JH, Zwerver J, Slart RH, et al. . In women with polycystic ovary syndrome and obesity, loss of intra-abdominal fat is associated with resumption of ovulation. Hum Reprod (2011) 26(9):2505–12. doi: 10.1093/humrep/der229
    1. Harborne LR, Sattar N, Norman JE, Fleming R. Metformin and weight loss in obese women with polycystic ovary syndrome: comparison of doses. J Clin Endocrinol Metab (2005) 90(8):4593–8. doi: 10.1210/jc.2004-2283
    1. Marinkovic-Radosevic J, Cigrovski Berkovic M, Kruezi E, Bilic-Curcic I, Mrzljak A. Exploring new treatment options for polycystic ovary syndrome: Review of a novel antidiabetic agent SGLT2 inhibitor. World J Diabetes (2021) 12(7):932–8. doi: 10.4239/wjd.v12.i7.932
    1. Pruett JE, Torres Fernandez ED, Everman SJ, Vinson RM, Davenport K, Logan MK, et al. . Impact of SGLT-2 inhibition on cardiometabolic abnormalities in a rat model of polycystic ovary syndrome. Int J Mol Sci (2021) 22(5):2576. doi: 10.3390/ijms22052576
    1. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol (2020) 17(12):761–72. doi: 10.1038/s41569-020-0406-8
    1. Li X, Römer G, Kerindongo RP, Hermanides J, Albrecht M, Hollmann MW, et al. . Sodium glucose Co-transporter 2 inhibitors ameliorate endothelium barrier dysfunction induced by cyclic stretch through inhibition of reactive oxygen species. Int J Mol Sci (2021) 22(11):6044. doi: 10.3390/ijms22116044
    1. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol (2017) 13(1):11–26. doi: 10.1038/nrneph.2016.170
    1. Lundkvist P, Sjöström CD, Amini S, Pereira MJ, Johnsson E, Eriksson JW. Dapagliflozin once-daily and exenatide once-weekly dual therapy: A 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes Metab (2017) 19(1):49–60. doi: 10.1111/dom.12779
    1. Hollander P, Bays HE, Rosenstock J, Frustaci ME, Fung A, Vercruysse F, et al. . Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: A randomized clinical trial. Diabetes Care (2017) 40(5):632–9. doi: 10.2337/dc16-2427
    1. Bays HE, Weinstein R, Law G, Canovatchel W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obes (Silver Spring) (2014) 22(4):1042–9. doi: 10.1002/oby.20663
    1. He YL, Haynes W, Meyers CD, Amer A, Zhang Y, Mahling P, et al. . The effects of licogliflozin, a dual SGLT1/2 inhibitor, on body weight in obese patients with or without diabetes. Diabetes Obes Metab (2019) 21(6):1311–21. doi: 10.1111/dom.13654
    1. Javed Z, Papageorgiou M, Deshmukh H, Rigby AS, Qamar U, Abbas J, et al. . Effects of empagliflozin on metabolic parameters in polycystic ovary syndrome: A randomized controlled study. Clin Endocrinol (Oxf). (2019) 90(6):805–13. doi: 10.1111/cen.13968
    1. Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, et al. . Polycystic ovary syndrome: A comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci (2022) 23(2):583. doi: 10.3390/ijms23020583
    1. Cai M, Shao X, Xing F, Zhang Y, Gao X, Zeng Q, et al. . Efficacy of canagliflozin versus metformin in women with polycystic ovary syndrome: A randomized, open-label, noninferiority trial. Diabetes Obes Metab (2022) 24(2):312–20. doi: 10.1111/dom.14583
    1. Consultation WJWHOtrs . Obesity: preventing and managing the global epidemic. Geneva World Health Organization (2000) 894:1–253. doi: 10.1002/jps.3080150106
    1. Ji CY. Report on childhood obesity in China (1)–body mass index reference for screening overweight and obesity in Chinese school-age children. BioMed Environ Sci (2005) 18(6):390–400. doi: 10.1111/j.1467-842X.2005.tb00258.x
    1. Elkind-Hirsch KE, Chappell N, Seidemann E, Storment J, Bellanger D. Exenatide, dapagliflozin or phentermine/topiramate differentially affect metabolic profiles in polycystic ovary syndrome. J Clin Endocrinol Metab (2021) 106(10):3019–3033. doi: 10.1210/clinem/dgab408
    1. Javed Z, Papageorgiou M, Madden LA, Rigby AS, Kilpatrick ES, Atkin SL, et al. . The effects of empagliflozin vs metformin on endothelial microparticles in overweight/obese women with polycystic ovary syndrome. Endocr Connect (2020) 9(6):563–9. doi: 10.1530/EC-20-0173
    1. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, et al. . Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med (2016) 164(11):740–51. doi: 10.7326/M15-2650
    1. Wong J, Chan KY, Lo K. Sodium-glucose co-transporter 2 inhibitors on weight change and cardiometabolic profiles in individuals with overweight or obesity and without diabetes: A meta-analysis. Obes Rev (2021) 22(12):e13336. doi: 10.1111/obr.13336
    1. Tan S, Ignatenko S, Wagner F, Dokras A, Seufert J, Zwanziger D, et al. . Licogliflozin versus placebo in women with polycystic ovary syndrome: A randomized, double-blind, phase 2 trial. Diabetes Obes Metab (2021) 23(11):2595–2599. doi: 10.1111/dom.14495
    1. Hahn S, Kuehnel W, Tan S, Kramer K, Schmidt M, Roesler S, et al. . Diagnostic value of calculated testosterone indices in the assessment of polycystic ovary syndrome. Clin Chem Lab Med (2007) 45(2):202–7. doi: 10.1515/CCLM.2007.031
    1. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol (2017) 13(1):11–26. doi: 10.1038/nrneph.2016.170
    1. Seltzer HS, Allen EW, Herron AL, Jr., Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest (1967) 46(3):323–35. doi: 10.1172/JCI105534
    1. Lazarte J, Kanagalingam T, Hegele RA. Lipid effects of sodium-glucose cotransporter 2 inhibitors. Curr Opin Lipidol (2021) 32(3):183–90. doi: 10.1097/MOL.0000000000000751
    1. He H, Feng J, Zhang S, Wang Y, Li J, Gao J, et al. . The apolipoprotein B/A1 ratio is associated with metabolic syndrome components, insulin resistance, androgen hormones, and liver enzymes in women with polycystic ovary syndrome. Front Endocrinol (Lausanne) (2021) 12:773781. doi: 10.3389/fendo.2021.773781

Source: PubMed

3
Předplatit