Computer aided-diagnosis of prostate cancer on multiparametric MRI: a technical review of current research

Shijun Wang, Karen Burtt, Baris Turkbey, Peter Choyke, Ronald M Summers, Shijun Wang, Karen Burtt, Baris Turkbey, Peter Choyke, Ronald M Summers

Abstract

Prostate cancer (PCa) is the most commonly diagnosed cancer among men in the United States. In this paper, we survey computer aided-diagnosis (CADx) systems that use multiparametric magnetic resonance imaging (MP-MRI) for detection and diagnosis of prostate cancer. We review and list mainstream techniques that are commonly utilized in image segmentation, registration, feature extraction, and classification. The performances of 15 state-of-the-art prostate CADx systems are compared through the area under their receiver operating characteristic curves (AUC). Challenges and potential directions to further the research of prostate CADx are discussed in this paper. Further improvements should be investigated to make prostate CADx systems useful in clinical practice.

Figures

Figure 1
Figure 1
Workflow of a typical prostate CADx system. Green rectangles indicate data (original scans and images after preprocessing); yellow rectangles indicate processes applied to the data or images.
Figure 2
Figure 2
Illustration of a prostate CAD prediction map showing true positive cancer classified correctly by SVM. The red rectangle indicates an image patch within the cancer in which local image features are extracted from T2WI, ADC, and Ktrans map. The green contour denotes the boundary of the prostate. Bright regions in the CAD prediction map correspond to a high probability of cancer and coincide with the correct location of the cancer.

References

    1. Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. Cancer Journal for Clinicians. 2013;63(1):11–30. doi: 10.3322/caac.21166.
    1. NCI .
    1. McNeal J. E., Redwine E. A., Freiha F. S., Stamey T. A. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. The American Journal of Surgical Pathology. 1988;12(12):897–906. doi: 10.1097/00000478-198812000-00001.
    1. Schroder F. H., Hugosson J., Roobol M. J., et al. Prostate-cancer mortality at 11 years of follow-up. The New England Journal of Medicine. 2012;366(11):981–990. doi: 10.1056/NEJMoa1113135.
    1. Hugosson J., Carlsson S., Aus G., Bergdahl S., Khatami A., Lodding P., Pihl C.-G., Stranne J., Holmberg E., Lilja H. Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. The Lancet Oncology. 2010;11(8):725–732. doi: 10.1016/S1470-2045(10)70146-7.
    1. Neppl-Huber C., Zappa M., Coebergh J. W., Rapiti E., Rachtan J., Holleczek B., Rosso S., Aareleid T., Brenner H., Gondos A., Bray F., Brewster D. H., Crocetti E., Hakulinen T., Janssen-Heijnen M., Magi M., Zanetti R., Smailyte G., Usel M., Zakelj M. P. Changes in incidence, survival and mortality of prostate cancer in Europe and the United States in the PSA era: additional diagnoses and avoided deaths. Annals of Oncology. 2012;23(5):1325–1334. doi: 10.1093/annonc/mdr414.
    1. Andriole G. L., et al. Mortality results from a randomized prostate-cancer screening trial. The New England Journal of Medicine. 2009;360(13):1310–1319.
    1. Andriole G. L., Crawford E. D., Grubb R. L., III, et al. Prostate cancer screening in the randomized prostate, lung, colorectal, and ovarian cancer screening trial: mortality results after 13 years of follow-up. Journal of the National Cancer Institute. 2012;104(2):125–132. doi: 10.1093/jnci/djr500.
    1. Norberg M., Egevad L., Holmberg L., Sparén P., Norlén B. J., Busch C. The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology. 1997;50(4):562–566. doi: 10.1016/S0090-4295(97)00306-3.
    1. Presti J. C., Jr., Chang J. J., Bhargava V., Shinohara K. The optimal systematic prostate biopsy scheme should include 8 rather than 6 biopsies: results of a prospective clinical trial. Journal of Urology. 2000;163(1):163–167. doi: 10.1016/S0022-5347(05)67995-5.
    1. Fleshner N. E., O’Sullivan M., Fair W. R. Prevalence and predictors of a positive repeat transrectal ultrasound guided needle biopsy of the prostate. Journal of Urology. 1997;158(2):505–509. doi: 10.1016/S0022-5347(01)64518-X.
    1. Serefoglu E. C., Altinova S., Ugras N. S., Akincioglu E., Asil E., Balbay M. D. How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Journal of the Canadian Urological Association. 2013;7(5-6):E293–E298. doi: 10.5489/cuaj.11224.
    1. Llobet R., Pérez-Cortés J. C., Toselli A. H., Juan A. Computer-aided detection of prostate cancer. International Journal of Medical Informatics. 2007;76(7):547–556. doi: 10.1016/j.ijmedinf.2006.03.001.
    1. Nakashima J., Tanimoto A., Imai Y., Mukai M., Horiguchi Y., Nakagawa K., Oya M., Ohigashi T., Marumo K., Murai M. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology. 2004;64(1):101–105. doi: 10.1016/j.urology.2004.02.036.
    1. Mullerad M., Hricak H., Kuroiwa K., Pucar D., Chen H.-N., Kattan M. W., Scardino P. T. Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. The Journal of Urology. 2005;174(6):2158–2163. doi: 10.1097/01.ju.0000181224.95276.82.
    1. Wefer A. E., Hricak H., Vigneron D. B., Coakley F. V., Lu Y., Wefer J., Mueller-Lisse U., Carroll P. R., Kurhanewicz J. Sextant localization of prostate cancer: Comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. Journal of Urology. 2000;164(2):400–404. doi: 10.1016/S0022-5347(05)67370-3.
    1. Nepple K. G., Rosevear H. M., Stolpen A. H., Brown J. A., Williams R. D. Concordance of preoperative prostate endorectal MRI with subsequent prostatectomy specimen in high-risk prostate cancer patients. Urologic Oncology: Seminars and Original Investigations. 2013;31(5):601–606. doi: 10.1016/j.urolonc.2011.05.004.
    1. Schiebler M. L., Schnall M. D., Pollack H. M., Lenkinski R. E., Tomaszewski J. E., Wein A. J., Whittington R., Rauschning W., Kressel H. Y. Current role of MR imaging in the staging of adenocarcinoma of the prostate. Radiology. 1993;189(2):339–352. doi: 10.1148/radiology.189.2.8210358.
    1. Haider M. A., van Der Kwast T. H., Tanguay J., Evans A. J., Hashmi A.-T., Lockwood G., Trachtenberg J. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. American Journal of Roentgenology. 2007;189(2):323–328. doi: 10.2214/AJR.07.2211.
    1. Padhani A. R., Gapinski C. J., Macvicar D. A., Parker G. J., Suckling J., Revell P. B., Leach M. O., Dearnaley D. P., Husband J. E. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clinical Radiology. 2000;55(2):99–109. doi: 10.1053/crad.1999.0327.
    1. Kozlowski P., Chang S. D., Jones E. C., Berean K. W., Chen H., Goldenberg S. L. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis: correlation with biopsy and histopathology. Journal of Magnetic Resonance Imaging. 2006;24(1):108–113. doi: 10.1002/jmri.20626.
    1. Kurhanewicz J., Swanson M. G., Nelson S. J., Vigneron D. B. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. Journal of Magnetic Resonance Imaging. 2002;16(4):451–463. doi: 10.1002/jmri.10172.
    1. Kirkham A. P. S., Emberton M., Allen C. How good is MRI at detecting and characterising cancer within the prostate? European Urology. 2006;50(6):1163–1175. doi: 10.1016/j.eururo.2006.06.025.
    1. Hara N., Okuizumi M., Koike H., Kawaguchi M., Bilim V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate. 2005;62(2):140–147. doi: 10.1002/pros.20124.
    1. Bates T. S., Gillatt D. A., Cavanagh P. M., Speakman M. A comparison of endorectal magnetic resonance imaging and transrectal ultrasonography in the local staging of prostate cancer with histopathological correlation. British Journal of Urology. 1997;79(6):927–932. doi: 10.1046/j.1464-410X.1997.00188.x.
    1. Komai Y., Numao N., Yoshida S., Matsuoka Y., Nakanishi Y., Ishii C., Koga F., Saito K., Masuda H., Fujii Y., Kawakami S., Kihara K. High diagnostic ability of multiparametric magnetic resonance imaging to detect anterior prostate cancer missed by transrectal 12-core biopsy. Journal of Urology. 2013;190(3):867–873. doi: 10.1016/j.juro.2013.03.078.
    1. Turkbey B., Pinto P. A., Mani H., Bernardo M., Pang Y., McKinney Y. L., Khurana K., Ravizzini G. C., Albert P. S., Merino M. J., Choyke P. L. Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology. 2010;255(1):89–99. doi: 10.1148/radiol.09090475.
    1. Turkbey B., Xu S., Kruecker J., Locklin J., Pang Y., Bernardo M., Merino M. J., Wood B. J., Choyke P. L., Pinto P. A. Documenting the location of prostate biopsies with image fusion. BJU International. 2011;107(1):53–57. doi: 10.1111/j.1464-410X.2010.09483.x.
    1. Xu S., Kruecker J., Turkbey B., Glossop N., Singh A. K., Choyke P., Pinto P., Wood B. J. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Computer Aided Surgery. 2008;13(5):255–264. doi: 10.1080/10929080802364645.
    1. Vourganti S., Rastinehad A., Yerram N. K., Nix J., Volkin D., Hoang A., Turkbey B., Gupta G. N., Kruecker J., Linehan W. M., Choyke P. L., Wood B. J., Pinto P. A. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. Journal of Urology. 2012;188(6):2152–2157. doi: 10.1016/j.juro.2012.08.025.
    1. Moore C. M., Robertson N. L., Arsanious N., Middleton T., Villers A., Klotz L., Taneja S. S., Emberton M. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. European Urology. 2013;63(1):125–140. doi: 10.1016/j.eururo.2012.06.004.
    1. Heijmink S. W. T. P. J., Fütterer J. J., Hambrock T., Takahashi S., Scheenen T. W. J., Huisman H. J., Hulsbergen Van De Kaa C. A., Knipscheer B. C., Kiemeney L. A. L. M., Witjes J. A., Barentsz J. O. Prostate cancer: Body array versus endorectal coil MR imaging at 3T - Comparison of image quality, localization, and staging performance. Radiology. 2007;244(1):184–195. doi: 10.1148/radiol.2441060425.
    1. Fütterer J. J., Engelbrecht M. R., Jager G. J., Hartman R. P., King B. F., Hulsbergen-Van de Kaa C. A., Witjes J. A., Barentsz J. O. Prostate cancer: Comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. European Radiology. 2007;17(4):1055–1065. doi: 10.1007/s00330-006-0418-8.
    1. Turkbey B., Merino M. J., Gallardo E. C., Shah V., Aras O., Bernardo M., Mena E., Daar D., Rastinehad A. R., Linehan W. M., Wood B. J., Pinto P. A., Choyke P. L. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. Journal of Magnetic Resonance Imaging. 2014;39(6):1443–1448. doi: 10.1002/jmri.24317.
    1. Bratan F., Niaf E., Melodelima C., Chesnais A. L., Souchon R., Mège-Lechevallier F., Colombel M., Rouvière O. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. European Radiology. 2013;23(7):2019–2029. doi: 10.1007/s00330-013-2795-0.
    1. May F., Treumann T., Dettmar P., Hartung R., Breul J. Limited value of endorectal magnetic resonance imaging and transrectal ultrasonography in the staging of clinically localized prostate cancer. BJU International. 2001;87(1):66–69. doi: 10.1046/j.1464-410X.2001.00018.x.
    1. Rasch C., Barillot I., Remeijer P., Touw A., van Herk M., Lebesque J. V. Definition of the prostate in CT and MRI: a multi-observer study. International Journal of Radiation Oncology Biology Physics. 1999;43(1):57–66. doi: 10.1016/S0360-3016(98)00351-4.
    1. Ruprecht O., Weisser P., Bodelle B., Ackermann H., Vogl T. J. MRI of the prostate: Interobserver agreement compared with histopathologic outcome after radical prostatectomy. European Journal of Radiology. 2012;81(3):456–460. doi: 10.1016/j.ejrad.2010.12.076.
    1. Liu P., Wang S., Turkbey B., Grant K., Pinto P., Choyke P., Wood B. J., Summers R. M. A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels. Medical Imaging 2013: Computer-Aided Diagnosis, 86701G; February 2013; Orlando, Fla, USA.
    1. Shah V., Turkbey B., Mani H., Pang Y., Pohida T., Merino M. J., Pinto P. A., Choyke P. L., Bernardo M. Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Medical Physics. 2012;39(7):4093–4103. doi: 10.1118/1.4722753.
    1. Woodhams R., Matsunaga K., Iwabuchi K., Kan S., Hata H., Kuranami M., Watanabe M., Hayakawa K. Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. Journal of Computer Assisted Tomography. 2005;29(5):644–649. doi: 10.1097/01.rct.0000171913.74086.1b.
    1. Klein S., van Der Heide U. A., Lips I. M., van Vulpen M., Staring M., Pluim J. P. W. Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics. 2008;35(4):1407–1417. doi: 10.1118/1.2842076.
    1. Martin Ś., Troccaz J., Daanen V. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Medical Physics. 2010;37(4):1579–1590. doi: 10.1118/1.3315367.
    1. Martin S., Rodrigues G., Patil N., Bauman G., D'Souza D., Sexton T., Palma D., Louie A. V., Khalvati F., Tizhoosh H. R., Gaede S. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI. International Journal of Radiation Oncology Biology Physics. 2013;85(1):95–100. doi: 10.1016/j.ijrobp.2011.07.046.
    1. Chandra S. S., Dowling J. A., Shen K.-K., Raniga P., Pluim J. P. W., Greer P. B., Salvado O., Fripp J. Patient specific prostate segmentation in 3-D magnetic resonance images. IEEE Transactions on Medical Imaging. 2012;31(10):1955–1964. doi: 10.1109/TMI.2012.2211377.
    1. Yin Y., Fotin S. V., Periaswamy S., et al. Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement. Proceedings of the SPIE Medical Imaging; 2012.
    1. Mahapatra D., Buhmann J. M. Prostate MRI segmentation using learned semantic knowledge and graph cuts. IEEE Transactions on Biomedical Engineering. 2014;61(3):756–764. doi: 10.1109/TBME.2013.2289306.
    1. Litjens G., Toth R., van de Ven W., Hoeks C., Kerkstra S., van Ginneken B., Vincent G., Guillard G., Birbeck N., Zhang J., Strand R., Malmberg F., Ou Y., Davatzikos C., Kirschner M., Jung F., Yuan J., Qiu W., Gao Q., Edwards P. E., Maan B., van der Heijden F., Ghose S., Mitra J., Dowling J., Barratt D., Huisman H., Madabhushi A. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Medical Image Analysis. 2014;18(2):359–373. doi: 10.1016/j.media.2013.12.002.
    1. Mazaheri Y., Bokacheva L., Kroon D. J., Akin O., Hricak H., Chamudot D., Fine S., Koutcher J. A. Semi-automatic deformable registration of prostate MR images to pathological slices. Journal of Magnetic Resonance Imaging. 2010;32(5):1149–1157. doi: 10.1002/jmri.22347.
    1. Chappelow J., Bloch B. N., Rofsky N., Genega E., Lenkinski R., Dewolf W., Madabhushi A. Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information. Medical Physics. 2011;38(4):2005–2018. doi: 10.1118/1.3560879.
    1. Peng Y., Jiang Y., Yang C., Brown J. B., Antic T., Sethi I., Schmid-Tannwald C., Giger M. L., Eggener S. E., Oto A. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study. Radiology. 2013;267(3):787–796. doi: 10.1148/radiol.13121454.
    1. Moradi M., Salcudean S. E., Chang S. D., Jones E. C., Buchan N., Casey R. G., Goldenberg S. L., Kozlowski P. Multiparametric MRI maps for detection and grading of dominant prostate tumors. Journal of Magnetic Resonance Imaging. 2012;35(6):1403–1413. doi: 10.1002/jmri.23540.
    1. Niaf E., Rouvière O., Mège-Lechevallier F., Bratan F., Lartizien C. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI. Physics in Medicine and Biology. 2012;57(12):3833–3851. doi: 10.1088/0031-9155/57/12/3833.
    1. Vos P. C., Hambrock T., van de Kaa C. A. H., Fütterer J. J., Barentsz J. O., Huisman H. J. Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI. Medical Physics. 2008;35(3):888–899. doi: 10.1118/1.2836419.
    1. Artan Y., Haider M. A., Langer D. L., Evans A. J., Yang Y., Wernick M. N., Trachtenberg J., Yetik I. S. Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Transactions on Image Processing. 2010;19(9):2444–2455. doi: 10.1109/TIP.2010.2048612.
    1. Chan I., Wells W., III, Mulkern R. V., Haker S., Zhang J., Zou K. H., Maier S. E., Tempany C. M. C. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Medical Physics. 2003;30(9):2390–2398. doi: 10.1118/1.1593633.
    1. Litjens G., Debats O., Barentsz J., Karssemeijer N., Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Transactions on Medical Imaging. 2014;33(5):1083–1092. doi: 10.1109/TMI.2014.2303821.
    1. Lopes R., Ayache A., Makni N., Puech P., Villers A., Mordon S., Betrouni N. Prostate cancer characterization on MR images using fractal features. Medical Physics. 2011;38(1):83–95. doi: 10.1118/1.3521470.
    1. Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory. 1990;36(5):961–1005. doi: 10.1109/18.57199.
    1. Guido R., Addison P., Walker J. Introducing wavelets and time—frequency analysis. IEEE Engineering in Medicine and Biology Magazine. 2009;28(5):13. doi: 10.1109/MEMB.2009.934243.
    1. Rioul O., Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine. 1991;8(4):14–38. doi: 10.1109/79.91217.
    1. Selesnick I. W. Wavelets, a modern tool for signal processing. Physics Today. 2007;60(10):78–79. doi: 10.1063/1.2800108.
    1. Tiwari P., Viswanath S., Kurhanewicz J., Sridhar A., Madabhushi A. Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. NMR in Biomedicine. 2012;25(4):607–619. doi: 10.1002/nbm.1777.
    1. Liu X., Yetik I. S. Automated prostate cancer localization without the need for peripheral zone extraction using multiparametric MRI. Medical Physics. 2011;38(6):2986–2994. doi: 10.1118/1.3589134.
    1. Burges C. J. C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 1998;2(2):121–167. doi: 10.1023/A:1009715923555.
    1. Vos P. C., Hambrock T., Barenstz J. O., Huisman H. J. Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI. Physics in Medicine and Biology. 2010;55(6):1719–1734. doi: 10.1088/0031-9155/55/6/012.
    1. Peng Y., Jiang Y., Antic T., et al. A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. Medical Imaging; 2013; Orlando, Fla, USA.
    1. Criminisi A., Shotton J., Konukoglu E. Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision. 2011;7(2-3):81–227. doi: 10.1561/0600000035.
    1. Ho T. K. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998;20(8):832–844. doi: 10.1109/34.709601.
    1. Breiman L. Random forests. Machine Learning. 2001;45(1):5–32. doi: 10.1023/A:1010933404324.
    1. Tiwari P., Kurhanewicz J., Madabhushi A. Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Medical Image Analysis. 2013;17(2):219–235. doi: 10.1016/j.media.2012.10.004.
    1. Puech P., Betrouni N., Makni N., Dewalle A.-S., Villers A., Lemaitre L. Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results. International Journal of Computer Assisted Radiology and Surgery. 2009;4(1):1–10. doi: 10.1007/s11548-008-0261-2.
    1. Niaf E., Flamary R., Rouviere O., Lartizien C., Canu S. Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric MR imaging. IEEE Transactions on Image Processing. 2014;23(3):979–991. doi: 10.1109/TIP.2013.2295759.

Source: PubMed

3
Předplatit