The Metabolic Role of Ketogenic Diets in Treating Epilepsy

Kaleem Imdad, Turki Abualait, Ammara Kanwal, Ziyad Tareq AlGhannam, Shahab Bashir, Anum Farrukh, Sahir Hameed Khattak, Raidah Albaradie, Shahid Bashir, Kaleem Imdad, Turki Abualait, Ammara Kanwal, Ziyad Tareq AlGhannam, Shahab Bashir, Anum Farrukh, Sahir Hameed Khattak, Raidah Albaradie, Shahid Bashir

Abstract

Epilepsy is a long-term neurological condition that results in recurrent seizures. Approximately 30% of patients with epilepsy have drug-resistant epilepsy (DRE). The ketogenic diet (KD) is considered an effective alternative treatment for epileptic patients. The aim of this study was to identify the metabolic role of the KD in epilepsy. Ketone bodies induce chemical messengers and alterations in neuronal metabolic activities to regulate neuroprotective mechanisms towards oxidative damage to decrease seizure rate. Here, we discuss the role of KD on epilepsy and related metabolic disorders, focusing on its mechanism of action, favorable effects, and limitations. We describe the significant role of the KD in managing epilepsy disorders.

Keywords: biomarkers; drug-resistant epilepsy; epilepsy; ketogenic diet; parameters.

Conflict of interest statement

No potential conflict of interest was reported by the authors.

Figures

Figure 1
Figure 1
Etiologies of epilepsy by age.
Figure 2
Figure 2
The introduction of ketogenic diets reported an enhancement of chemical messengers in the brain.

References

    1. Verrotti A., Iapadre G., Di Francesco L., Zagaroli L., Farello G. Diet in the Treatment of Epilepsy: What We Know So Far. Nutrients. 2020;12:2645. doi: 10.3390/nu12092645.
    1. López S.V., Ramos-Jiménez C., de la Cruz Reyes L.A., Ruiz A.K.G., Arriola L.A.B., Olivares J.M.M., Galindo E.G.A., Pedroza I.F.P., San-Juan D. Epilepsy diagnosis based on one unprovoked seizure and ≥60% risk. A systematic review of the etiologies. Epilepsy Behav. 2021;125:108392. doi: 10.1016/j.yebeh.2021.108392.
    1. Yamagata A., Miyazaki Y., Yokoi N., Shigematsu H., Sato Y., Goto-Ito S., Maeda A., Goto T., Sanbo M., Hirabayashi M., et al. Structural basis of epilepsy-related ligand–receptor complex LGI1–ADAM22. Nat. Commun. 2018;9:1546. doi: 10.1038/s41467-018-03947-w.
    1. Granata T., Marchi N., Carlton E., Ghosh C., Gonzalez-Martinez J., Alexopoulos A.V., Janigro D. Management of the patient with medically refractory epilepsy. Expert. Rev. Neurother. 2009;9:1791–1802. doi: 10.1586/ern.09.114.
    1. Lyons L., Schoeler N.E., Langan D., Cross J.H. Use of ketogenic diet therapy in infants with epilepsy: A systematic review and meta-analysis. Epilepsia. 2020;61:1261–1281. doi: 10.1111/epi.16543.
    1. Martin-McGill K.J., Bresnahan R., Levy R.G., Cooper P.N. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev. 2018;11:CD001903. doi: 10.1002/14651858.CD001903.pub4.
    1. D’Andrea Meira I., Romão T.T., Pires do Prado H.J., Krüger L.T., Pires M.E.P., da Conceição P.O. Ketogenic Diet and Epilepsy: What We Know So Far. Front. Neurosci. 2019;13:5–13. doi: 10.3389/fnins.2019.00005.
    1. Ko A., Kwon H.E., Kim H.D. Updates on the ketogenic diet therapy for pediatric epilepsy. Biomed. J. 2022;45:19–26. doi: 10.1016/j.bj.2021.11.003.
    1. Armeno M., Verini A., Caballero E., Cresta A., Valenzuela G.R., Caraballo R. Long-term effectiveness and adverse effects of ketogenic diet therapy in infants with drug-resistant epilepsy treated at a single center in Argentina. Epilepsy Res. 2021;178:106793. doi: 10.1016/j.eplepsyres.2021.106793.
    1. Beghi E. The Epidemiology of Epilepsy. Neuroepidemiology. 2020;54:185–191. doi: 10.1159/000503831.
    1. Thijs R.D., Surges R., O‘Brien T.J., Sander J.W. Epilepsy in adults. Lancet. 2019;393:689–701. doi: 10.1016/S0140-6736(18)32596-0.
    1. Perucca P., Bahlo M., Berkovic S.F. The Genetics of Epilepsy. Annu. Rev. Genomics. Hum. Genet. 2020;21:205–230. doi: 10.1146/annurev-genom-120219-074937.
    1. Falco-Walter J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020;40:617–623. doi: 10.1055/s-0040-1718719.
    1. Pressler R.M., Cilio M.R., Mizrahi E.M., Moshé S.L., Nunes M.L., Plouin P., Vanhatalo S., Yozawitz E., de Vries L.S., Puthenveettil Vinayan K., et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia. 2021;62:615–628. doi: 10.1111/epi.16815.
    1. Scheffer I.E., Berkovic S., Capovilla G., Connolly M.B., French J., Guilhoto L., Hirsch E., Jain S., Mathern G.W., Moshé S.L., et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:512–521. doi: 10.1111/epi.13709.
    1. Baumgartner C., Koren J., Britto-Arias M., Schmidt S., Pirker S. Epidemiology and pathophysiology of autonomic seizures: A systematic review. Clin. Auton. Res. 2019;29:137–150. doi: 10.1007/s10286-019-00596-x.
    1. Fisher R.S., Cross J.H., French J.A., Higurashi N., Hirsch E., Jansen F.E., Lagae L., Moshé S.L., Peltola J., Roulet Perez E., et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:522–530. doi: 10.1111/epi.13670.
    1. Singh G., Sander J.W. The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy Behav. 2020;105:106949. doi: 10.1016/j.yebeh.2020.106949.
    1. Jovel C.A.E., Salazar S.R., Rodríguez C.R., Mejía F.E.S. Factors associated with quality of life in a low-income population with epilepsy. Epilepsy Res. 2016;127:168–174. doi: 10.1016/j.eplepsyres.2016.08.031.
    1. Nazir N., Sabri A.A., Ahmad N., Akram M.N., Hussain H.A., Rasool A.G. Epidemiological study of epilepsy in Faisalabad. Prof. Med. J. 2020;27:2608–2612. doi: 10.29309/TPMJ/2020.27.12.4685.
    1. Subota A., Khan S., Josephson C.B., Manji S., Lukmanji S., Roach P., Wiebe S., Buchhalter J., Federico P., Teskey G.C., et al. Signs and symptoms of the postictal period in epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2019;94:243–251. doi: 10.1016/j.yebeh.2019.03.014.
    1. DeGiorgio C.M., Curtis A., Carapetian A., Hovsepian D., Krishnadasan A., Markovic D. Why are epilepsy mortality rates rising in the United States? A population-based multiple cause-of-death study. BMJ Open. 2020;10:e035767. doi: 10.1136/bmjopen-2019-035767.
    1. Mula M. Emerging drugs for focal epilepsy. Expert Opin. Emerg. Drugs. 2018;23:243–249. doi: 10.1080/14728214.2018.1527903.
    1. Quintana M., Sánchez-López J., Mazuela G., Santamarina E., Abraira L., Fonseca E., Seijo I., Álvarez-Sabin J., Toledo M. Incidence and mortality in adults with epilepsy in northern Spain. Acta Neurol. Scand. 2021;143:27–33. doi: 10.1111/ane.13349.
    1. Nabbout R., Kuchenbuch M. Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat. Rev. Neurol. 2020;16:674–688. doi: 10.1038/s41582-020-0409-4.
    1. Krasowski M.D., McMillin G.A. Advances in anti-epileptic drug testing. Clin. Chim. Acta. 2014;436:224–236. doi: 10.1016/j.cca.2014.06.002.
    1. de Biase S., Nilo A., Bernardini A., Gigli G.L., Valente M., Merlino G. Timing use of novel anti-epileptic drugs: Is earlier better? Expert Rev. Neurother. 2019;19:945–954. doi: 10.1080/14737175.2019.1636649.
    1. Mobed A., Shirafkan M., Charsouei S. Biosensors technology for anti-epileptic drugs. Clin. Chim. Acta. 2022;533:175–182. doi: 10.1016/j.cca.2022.06.027.
    1. Málaga I., Sánchez-Carpintero R., Roldán S., Ramos-Lizana J., García-Peñas J.J. New anti-epileptic drugs in paediatrics. An. Pediatría (English Ed.) 2019;91:e1–e415. doi: 10.1016/j.anpede.2019.09.005.
    1. Rogawski M.A., Löscher W., Rho J.M. Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harb. Perspect. Med. 2016;6:a022780. doi: 10.1101/cshperspect.a022780.
    1. Peng S.J., Wong T.T., Huang C.C., Chang H., Hsieh K.L.C., Tsai M.L., Yang Y.S., Chen C.L. Quantitative analysis of intraoperative electrocorticography mirrors histopathology and seizure outcome after epileptic surgery in children. J. Formos. Med. Assoc. 2021;120:1500–1511. doi: 10.1016/j.jfma.2020.11.001.
    1. Consales A., Casciato S., Asioli S., Barba C., Caulo M., Colicchio G., Cossu M., de Palma L., Morano A., Vatti G., et al. The surgical treatment of epilepsy. Neurol. Sci. 2021;42:2249–2260. doi: 10.1007/s10072-021-05198-y.
    1. Helmstaedter C., Beeres K., Elger C.E., Kuczaty S., Schramm J., Hoppe C. Cognitive outcome of pediatric epilepsy surgery across ages and different types of surgeries: A monocentric 1-year follow-up study in 306 patients of school age. Seizure. 2020;77:86–92. doi: 10.1016/j.seizure.2019.07.021.
    1. Numis A.L., da Gente G., Sherr E.H., Glass H.C. Whole-exome sequencing with targeted analysis and epilepsy after acute symptomatic neonatal seizures. Pediatr. Res. 2022;91:896–902. doi: 10.1038/s41390-021-01509-3.
    1. Janmohamed M., Brodie M.J., Kwan P. Pharmacoresistance—Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2020;168:107790. doi: 10.1016/j.neuropharm.2019.107790.
    1. Zarnowska I.M. Therapeutic Use of the Ketogenic Diet in Refractory Epilepsy: What We Know and What Still Needs to Be Learned. Nutrients. 2020;12:2616. doi: 10.3390/nu12092616.
    1. Tekin E., Serdaroğlu F.M., Şahin Ş., Taşdemir H.A. Ketogenic diet experience at Ondokuz Mayıs University. Neurol. Sci. 2021;42:2481–2485. doi: 10.1007/s10072-020-04853-0.
    1. Li R.J., Liu Y., Liu H.Q., Li J. Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration. J. Food Biochem. 2020;44:13140. doi: 10.1111/jfbc.13140.
    1. Dabek A., Wojtala M., Pirola L., Balcerczyk A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients. 2020;12:788. doi: 10.3390/nu12030788.
    1. Wells J., Swaminathan A., Paseka J., Hanson C. Efficacy and Safety of a Ketogenic Diet in Children and Adolescents with Refractory Epilepsy—A Review. Nutrients. 2020;12:1809. doi: 10.3390/nu12061809.
    1. Dhillon K.K., Gupta S. Biochemistry, Ketogenesis; StatPearls Publishers; StatPearls [Internet] [(accessed on 10 February 2022)];2022 Available online: .
    1. Masino S.A., Li T., Theofilas P., Sandau U.S., Ruskin D.N., Fredholm B.B., Geiger J.D., Aronica E., Boison D. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J. Clin. Investig. 2011;121:2679–2683. doi: 10.1172/JCI57813.
    1. Yang H., Shan W., Zhu F., Wu J., Wang Q. Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms. Front. Neurol. 2019;10:585. doi: 10.3389/fneur.2019.00585.
    1. Rosenbaum M., Hall K.D., Guo J., Ravussin E., Mayer L.S., Reitman M.L., Smith S.R., Walsh B.T., Leibel R.L. Glucose and Lipid Homeostasis and Inflammation in Humans Following an Isocaloric Ketogenic Diet. Obesity. 2019;27:971–981. doi: 10.1002/oby.22468.
    1. Dunwiddie T.V., Diao L., Proctor W.R. Adenine Nucleotides Undergo Rapid, Quantitative Conversion to Adenosine in the Extracellular Space in Rat Hippocampus. J. Neurosci. 1997;17:7673–7682. doi: 10.1523/JNEUROSCI.17-20-07673.1997.
    1. Kawamura M., Ruskin D.N., Masino S.A. Metabolic Autocrine Regulation of Neurons Involves Cooperation among Pannexin Hemichannels, Adenosine Receptors, and KATP Channels. J. Neurosci. 2010;30:3886–3895. doi: 10.1523/JNEUROSCI.0055-10.2010.
    1. Mao X.-Y., Zhou H.-H., Jin W.-L. Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy. Front. Neurosci. 2019;13:512. doi: 10.3389/fnins.2019.00512.
    1. Plum L. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J. Clin. Investig. 2006;116:1886–1901. doi: 10.1172/JCI27123.
    1. Singh B., Khattab F., Chae H., Desmet L., Herrera P.L., Gilon P. KATP channel blockers control glucagon secretion by distinct mechanisms: A direct stimulation of α-cells involving a [Ca2+]c rise and an indirect inhibition mediated by somatostatin. Mol. Metab. 2021;53:101268. doi: 10.1016/j.molmet.2021.101268.
    1. Yang H.Q., Echeverry F.A., ElSheikh A., Gando I., Arredondo S.A., Samper N., Cardozo T., Delmar M., Shyng S.L., Coetzee W.A. Subcellular trafficking and endocytic recycling of K ATP channels. Am. J. Physiol. Physiol. 2022;322:C1230–C1247. doi: 10.1152/ajpcell.00099.2022.
    1. Lutas A., Yellen G. The ketogenic diet: Metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013;36:32–40. doi: 10.1016/j.tins.2012.11.005.
    1. Ułamek-Kozioł M., Czuczwar S.J., Januszewski S., Pluta R. Ketogenic Diet and Epilepsy. Nutrients. 2019;11:2510. doi: 10.3390/nu11102510.
    1. Kayode O.T., Rotimi D.E., Afolayan O.A., Kayode A.A. Ketogenic diet: A nutritional remedy for some metabolic disorders. J. Educ. Health Sport. 2020;10:180–188. doi: 10.12775/JEHS.2020.10.08.021.
    1. Hartman A.L., Gasior M., Vining E.P., Rogawski M.A. The Neuropharmacology of the Ketogenic Diet. Pediatr. Neurol. 2007;36:281–292. doi: 10.1016/j.pediatrneurol.2007.02.008.
    1. Murakami M., Tognini P. Molecular Mechanisms Underlying the Bioactive Properties of a Ketogenic Diet. Nutrients. 2022;14:782. doi: 10.3390/nu14040782.
    1. Molteberg E., Thorsby P.M., Kverneland M., Iversen P.O., Selmer K.K., Nakken K.O., Taubøll E. Effects of modified Atkins diet on thyroid function in adult patients with pharmacoresistant epilepsy. Epilepsy Behav. 2020;111:107285. doi: 10.1016/j.yebeh.2020.107285.
    1. Cervenka M.C., Barron B.J., Kossoff E.H., Zahava Turner R.D. The Ketogenic and Modified Atkins Diets: Treatments for Epilepsy and Other Disorders. 2016. [(accessed on 10 February 2022)]. Available online: .
    1. Dou X., Xu X., Mo T., Chen H., Wang Z., Li X., Jia S., Wang D. Evaluation of the seizure control and the tolerability of ketogenic diet in Chinese children with structural drug-resistant epilepsy. Seizure. 2022;94:43–51. doi: 10.1016/j.seizure.2021.11.008.
    1. Kossoff E.H., Zupec-Kania B.A., Amark P.E., Ballaban-Gil K.R., Christina Bergqvist A.G., Blackford R., Buchhalter J.R., Caraballo R.H., Helen Cross J., Dahlin M.G., et al. Optimal clinical management of children receiving the ketogenic diet: Recommendations of the International Ketogenic Diet Study Group. Epilepsia. 2009;50:304–317. doi: 10.1111/j.1528-1167.2008.01765.x.
    1. Feinman R.D. The biochemistry of low-carbohydrate and ketogenic diets. Curr. Opin. Endocrinol. Diabetes Obes. 2020;27:261–268. doi: 10.1097/MED.0000000000000575.
    1. Longo R., Peri C., Cricrì D., Coppi L., Caruso D., Mitro N., De Fabiani E., Crestani M. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients. 2019;11:2497.
    1. Bruci A., Tuccinardi D., Tozzi R., Balena A., Santucci S., Frontani R., Mariani S., Basciani S., Spera G., Gnessi L., et al. Very Low-Calorie Ketogenic Diet: A Safe and Effective Tool for Weight Loss in Patients with Obesity and Mild Kidney Failure. Nutrients. 2020;12:333. doi: 10.3390/nu12020333.
    1. Stubbs B.J., Koutnik A.P., Goldberg E.L., Upadhyay V., Turnbaugh P.J., Verdin E., Newman J.C. Investigating Ketone Bodies as Immunometabolic Countermeasures against Respiratory Viral Infections. Med. 2020;1:43–65. doi: 10.1016/j.medj.2020.06.008.
    1. Morris G., Puri B.K., Carvalho A., Maes M., Berk M., Ruusunen A., Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int. J. Neuropsychopharmacol. 2020;23:366–384. doi: 10.1093/ijnp/pyaa008.
    1. Madaan P., Jauhari P., Chakrabarty B., Gulati S. Ketogenic Diet in Epilepsy of Infancy with Migrating Focal Seizures. Pediatr. Neurol. 2019;95:92. doi: 10.1016/j.pediatrneurol.2018.12.019.
    1. Green S.F., Nguyen P., Kaalund-Hansen K., Rajakulendran S., Murphy E. Effectiveness, retention, and safety of modified ketogenic diet in adults with epilepsy at a tertiary-care centre in the UK. J. Neurol. 2020;267:1171–1178. doi: 10.1007/s00415-019-09658-6.
    1. Tian X., Chen J., Zhang J., Yang X., Ji T., Zhang Y., Wu Y., Fang F., Wu X., Zhang Y. The Efficacy of Ketogenic Diet in 60 Chinese Patients with Dravet Syndrome. Front Neurol. 2019;10:625. doi: 10.3389/fneur.2019.00625.
    1. Lucchi C., Marchiò M., Caramaschi E., Giordano C., Giordano R., Guerra A., Biagini G. Electrographic Changes Accompanying Recurrent Seizures under Ketogenic Diet Treatment. Pharmaceuticals. 2017;10:82. doi: 10.3390/ph10040082.
    1. Marchiò M., Roli L., Giordano C., Trenti T., Guerra A., Biagini G. Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet. Clin. Nutr. 2019;38:954–957. doi: 10.1016/j.clnu.2018.03.009.
    1. Masino S.A., Rho J.M. Metabolism and epilepsy: Ketogenic diets as a homeostatic link. Brain Res. 2019;1703:26–30. doi: 10.1016/j.brainres.2018.05.049.
    1. Grigolon R.B., Gerchman F., Schöffel A.C., Hawken E.R., Gill H., Vazquez G.H., Mansur R.B., McIntyre R.S., Brietzke E. Mental, emotional, and behavioral effects of ketogenic diet for non-epileptic neuropsychiatric conditions. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2020;102:109947. doi: 10.1016/j.pnpbp.2020.109947.
    1. Boison D., Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235–1243. doi: 10.1002/glia.23247.
    1. Simeone T.A., Simeone K.A., Stafstrom C.E., Rho J.M. Do ketone bodies mediate the anti-seizure effects of the ketogenic diet? Neuropharmacology. 2018;133:233–241. doi: 10.1016/j.neuropharm.2018.01.011.
    1. Barzegar M., Afghan M., Tarmahi V., Behtari M., Rahimi Khamaneh S., Raeisi S. Ketogenic diet: Overview, types, and possible anti-seizure mechanisms. Nutr. Neurosci. 2021;24:307–316. doi: 10.1080/1028415X.2019.1627769.
    1. Olson C.A., Vuong H.E., Yano J.M., Liang Q.Y., Nusbaum D.J., Hsiao E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell. 2018;173:1728–1741.e13. doi: 10.1016/j.cell.2018.04.027.
    1. Schwantje M., Verhagen L.M., van Hasselt P.M., Fuchs S.A. Glucose transporter type 1 deficiency syndrome and the ketogenic diet. J. Inherit. Metab. Dis. 2020;43:216–222. doi: 10.1002/jimd.12175.
    1. Ali A.M., Kunugi H. Intermittent Fasting, Dietary Modifications, and Exercise for the Control of Gestational Diabetes and Maternal Mood Dysregulation: A Review and a Case Report. Int. J. Environ. Res. Public Health. 2020;17:9379. doi: 10.3390/ijerph17249379.
    1. Zhu T.W., Zhang X., Zong M.H., Linhardt R.J., Wu H., Li B. Storage stability studies on interesterified blend-based fast-frozen special fats for oxidative stability, crystallization characteristics and physical properties. Food Chem. 2020;306:125563. doi: 10.1016/j.foodchem.2019.125563.
    1. Manville R.W., Abbott G.W. Potassium channels act as chemosensors for solute transporters. Commun. Biol. 2020;3:90. doi: 10.1038/s42003-020-0820-9.
    1. El-Rashidy O.F., Youssef M.M., Elgendy Y.G., Mohsen M.A., Morsy S.M., Dawh S.A., Saad K. Selenium and antioxidant levels in children with intractable epilepsy receiving ketogenic diet. Acta Neurol. Belg. 2020;120:375–380. doi: 10.1007/s13760-020-01310-9.
    1. Mastrangelo M., Tromba V., Silvestri F., Costantino F. Epilepsy in children with type 1 diabetes mellitus: Pathophysiological basis and clinical hallmarks. Eur. J. Paediatr. Neurol. 2019;23:240–247. doi: 10.1016/j.ejpn.2018.12.006.
    1. Khodabakhshi A., Akbari M.E., Mirzaei H.R., Mehrad-Majd H., Kalamian M., Davoodi S.H. Feasibility, Safety, and Beneficial Effects of MCT-Based Ketogenic Diet for Breast Cancer Treatment: A Randomized Controlled Trial Study. Nutr. Cancer. 2020;72:627–634. doi: 10.1080/01635581.2019.1650942.
    1. Goswami J.N., Sharma S. Current Perspectives On The Role Of The Ketogenic Diet In Epilepsy Management. Neuropsychiatr. Dis. Treat. 2019;15:3273–3285. doi: 10.2147/NDT.S201862.
    1. Brietzke E., Mansur R.B., Subramaniapillai M., Balanzá-Martínez V., Vinberg M., González-Pinto A., Rosenblat J.D., Ho R., McIntyre R.S. Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments. Neurosci. Biobehav. Rev. 2018;94:11–16. doi: 10.1016/j.neubiorev.2018.07.020.
    1. McDonald T.J., Henry-Barron B.J., Felton E.A., Gutierrez E.G., Barnett J., Fisher R., Lwin M., Jan A., Vizthum D., Kossoff E.H., et al. Improving compliance in adults with epilepsy on a modified Atkins diet: A randomized trial. Seizure. 2018;60:132–138. doi: 10.1016/j.seizure.2018.06.019.
    1. Di Lorenzo C., Coppola G., Di Lenola D., Evangelista M., Sirianni G., Rossi P., Di Lorenzo G., Serrao M., Pierelli F. Efficacy of Modified Atkins Ketogenic Diet in Chronic Cluster Headache: An Open-Label, Single-Arm, Clinical Trial. Front. Neurol. 2018;9:64. doi: 10.3389/fneur.2018.00064.
    1. Ludwig D.S. The Ketogenic Diet: Evidence for Optimism but High-Quality Research Needed. J. Nutr. 2020;150:1354–1359. doi: 10.1093/jn/nxz308.
    1. Khattak S.H., Begum S., Aqeel M., Fayyaz M., Bangash S.A.K., Riaz M.N., Saeed S., Ahmed A., Ali G.M. Investigating the Allelic Variation of Loci Controlling Rust Resistance Genes in Wheat (Triticum aestivum L.) Land Races by Ssr Marker. Appl. Ecol. Environ. Res. 2020;18:8091–8118. doi: 10.15666/aeer/1806_80918118.
    1. Qaiser R., Fayyaz M., Sufiyan M., Khattak S.H., Sandhu K.S., Sidhu G.S. Genome-wide association mapping and population structure for stripe rust in Pakistani wheat germplasm. Pakistan J. Bot. 2020;9:1056. doi: 10.30848/PJB2022-4(11).
    1. Waqar A., Khattak S.H., Begum S., Rehman T., Shehzad A., Ajmal W., Zia S.S., Siddiqi I., Ali G.M. Stripe Rust: A Review of the Disease, Yr Genes and its Molecular Markers. Sarhad J. Agric. 2018;34:188–201. doi: 10.17582/journal.sja/2018/34.1.188.201.
    1. Begum S., Khan M.R., Jan A., Rahman H., Khattak S.H., Saeed S., Ahmed A., Ali G.M. Genetic Transformation of the Epsps Herbicide Resistance Gene in Agrobacterium Mediated Peanut (Arachis hypogaea L.) and Effective Revival of Transgenic Plants. Appl. Ecol. Environ. Res. 2022;20:1335–1349. doi: 10.15666/aeer/2002_13351349.
    1. Zupec-Kania B. KetoCalculator: A web-based calculator for the ketogenic diet. Epilepsia. 2008;49:14–16. doi: 10.1111/j.1528-1167.2008.01824.x.
    1. Seo J.G., Cho Y.W., Kim K.T., Kim D.W., Yang K.I., Lee S.T., Byun J.I., No Y.J., Kang K.W., Kim D. Pharmacological Treatment of Epilepsy in Elderly Patients. J. Clin. Neurol. 2020;16:556. doi: 10.3988/jcn.2020.16.4.556.
    1. van der Louw E., van den Hurk D., Neal E., Leiendecker B., Fitzsimmon G., Dority L., Thompson L., Marchió M., Dudzińska M., Dressler A., et al. Ketogenic diet guidelines for infants with refractory epilepsy. Eur. J. Paediatr. Neurol. 2016;20:798–809. doi: 10.1016/j.ejpn.2016.07.009.
    1. Park E.G., Lee J., Lee J. Use of the Modified Atkins Diet in Intractable Pediatric Epilepsy. J. Epilepsy Res. 2018;8:20–26. doi: 10.14581/jer.18004.
    1. Armeno M., Araujo C., Sotomontesano B., Caraballo R.H. Update on the adverse effects during therapy with a ketogenic diet in paediatric refractory epilepsy. Rev. Neurol. 2018;66:193–200.
    1. Heussinger N., Della Marina A., Beyerlein A., Leiendecker B., Hermann-Alves S., Dalla Pozza R., Klepper J. 10 patients, 10 years—Long term follow-up of cardiovascular risk factors in Glut1 deficiency treated with ketogenic diet therapies: A prospective, multicenter case series. Clin. Nutr. 2018;37:2246–2251. doi: 10.1016/j.clnu.2017.11.001.
    1. Kapoor D., Garg D., Sharma S. Emerging role of the ketogenic dietary therapies beyond epilepsy in child neurology. Ann. Indian Acad. Neurol. 2021;44:470–480. doi: 10.4103/aian.AIAN_20_21.
    1. Mosek A., Natour H., Neufeld M.Y., Shiff Y., Vaisman N. Ketogenic diet treatment in adults with refractory epilepsy: A prospective pilot study. Seizure. 2009;18:30–33. doi: 10.1016/j.seizure.2008.06.001.
    1. Kossoff E.H., Al-Macki N., Cervenka M.C., Kim H.D., Liao J., Megaw K., Nathan J.K., Raimann X., Rivera R., Wiemer-Kruel A., et al. What are the minimum requirements for ketogenic diet services in resource-limited regions? Recommendations from the International League Against Epilepsy Task Force for Dietary Therapy. Epilepsia. 2015;56:1337–1342. doi: 10.1111/epi.13039.

Source: PubMed

3
Předplatit