Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review

Supreeth S Rudrappa, Daniel J Wilkinson, Paul L Greenhaff, Kenneth Smith, Iskandar Idris, Philip J Atherton, Supreeth S Rudrappa, Daniel J Wilkinson, Paul L Greenhaff, Kenneth Smith, Iskandar Idris, Philip J Atherton

Abstract

The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as "simple" atrophy) and insulin resistance are "non-pathological" events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear-especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state "anabolic resistance." While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic "marker" studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.

Keywords: diabetes; disuse; immobilization; protein metabolism; skeletal muscle.

Figures

Figure 1
Figure 1
Diagrammatic representation of the main mechanisms involved in disuse skeletal muscle atrophy in humans: Immobilization/disuse reduces both postabsorptive and post prandial muscle protein synthesis (MPS) via the mammalian target of rapamycin (mTORC1) and Akt signaling. The role of MPS, muscle protein breakdown (MPB) and insulin resistance (IR) in simple disuse atrophy remain poorly defined in humans. So the role of insulin resistance and MPB in the setting of disuse atrophy needs further evaluation. Inflammation probably leads to IR. Recently, reactive oxygen species (ROS) has been implicated in development of muscle atrophy in disuse setting, but the mechanism in human remains putative. Solid arrow shows positive association and broken arrow shows putative association. See text for more details.
Figure 2
Figure 2
Diagrammatic representation of the overlap between insulin signaling pathway, reactive oxygen species (ROS), inflammatory cytokine such as NF-κB and ubiquitin-proteasome system in insulin resistant (IR) states particularly diabetes: In IR state, PI3K activity is decreased, leading to decreased activity of Akt, which in turn release the inhibition of FOXO and caspase-3 resulting in elevation of muscle ring finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx/atrogin-1) finally leading to increased proteolytic activity. Also, ROS and low grade inflammation via NF-κB pathway lead to muscle atrophy. See text for more details.

References

    1. Abdulla H., Smith K., Atherton P. J., Idris I. (2016). Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia 59, 44–55. 10.1007/s00125-015-3751-0
    1. Alkner B. A., Tesch P. A. (2004). Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur. J. Appl. Physiol. 93, 294–305. 10.1007/s00421-004-1172-8
    1. Atherton P. J., Paul L. G., Stuart M. P., Sue C. B., Christopher M. A., Charles H. L. (2016). Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am. J. Physiol. Endocrinol. Metab.. [Epub ahead of print]. 10.1152/ajpendo.00257.2016
    1. Atherton P. J., Smith K. (2012). Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 590, 1049–1057. 10.1113/jphysiol.2011.225003
    1. Bamman M. M., Clarke M. S., Feeback D. L., Talmadge R. J., Stevens B. R., Lieberman S. A., et al. . (1998). Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J. Appl. Physiol. (1985) 84, 157–163.
    1. Bashan N., Kovsan J., Kachko I., Ovadia H., Rudich A. (2009). Positive and Negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol. Rev. 89, 27–71. 10.1152/physrev.00014.2008
    1. Biensø R. S., Ringholm S., Kiilerich K., Aachmann-Andersen N. J., Krogh-Madsen R., Guerra B., et al. . (2012). GLUT4 and Glycogen Synthase are key players in bed rest-induced insulin resistance. Diabetes 61, 1090–1099. 10.2337/db11-0884
    1. Bodine S. C., Latres E., Baumhueter S., Lai V. K., Nunez L., Clarke B. A., et al. . (2001a). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708. 10.1126/science.1065874
    1. Bodine S. C., Stitt T. N., Gonzalez M., Kline W. O., Stover G. L., Bauerlein R., et al. . (2001b). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3, 1014–1019. 10.1038/ncb1101-1014
    1. Bodine S. C. (2013). Hibernation: the search for treatments to prevent disuse-induced skeletal muscle atrophy. Exp. Neurol. 248, 129–135. 10.1016/j.expneurol.2013.06.003
    1. Bonaldo P., Sandri M. (2013). Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6, 25–39. 10.1242/dmm.010389
    1. Brocca L., Cannavino J., Coletto L., Biolo G., Sandri M., Bottinelli R., et al. . (2012). The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J. Physiol. 590, 5211–5230. 10.1113/jphysiol.2012.240267
    1. Brocca L., Longa E., Cannavino J., Seynnes O., de Vito G., McPhee J., et al. . (2015). Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks unilateral lower limb suspension and active recovery. J. Physiol. 24, 5361–5385. 10.1113/jp271188
    1. Brooks N., Cloutier G. J., Cadena S. M., Layne J. E., Nelsen C. A., Freed A. M., et al. . (2008). Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit. J. Appl. Physiol. (1985) 105, 241–248. 10.1152/japplphysiol.01346.2007
    1. Castro M. J., Apple D. F., Jr., Staron R. S., Campos G. E., Dudley G. A. (1999). Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J. Appl. Physiol. 86, 350–358.
    1. Churchward-Venne T. A., Burd N. A., Mitchell C. J., West D. W., Philp A., Marcotte G. R., et al. . (2012a). Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J. Physiol. 590, 2751–2765. 10.1113/jphysiol.2012.228833
    1. Churchward-Venne T. A., Burd N. A., Phillips S. M. (2012b). Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr. Metab. 9:40. 10.1186/1743-7075-9-40
    1. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., et al. . (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 19, 422–424. 10.1096/fj.04-2640fje
    1. Dalla Libera L., Ravara B., Gobbo V., Tarricone E., Vitadello M., Biolo G., et al. . (2009). A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle. J. Appl. Physiol. (1985) 107, 549–557. 10.1152/japplphysiol.00280.2009
    1. de Boer M. D., Selby A., Atherton P., Smith K., Seynnes O. R., Maganaris C. N., et al. . (2007). The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J. Physiol. 585, 241–251. 10.1113/jphysiol.2007.142828
    1. DeFronzo R. A., Tripathy D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl. 2), 157–163. 10.2337/dc09-S302
    1. Dickinson J. M., Rasmussen B. B. (2011). Essential amino acid sensing, signaling, and transport in the regulation of human muscle protein metabolism. Curr. Opin. Clin. Nutr. Metab. Care 14, 83–88. 10.1097/MCO.0b013e3283406f3e
    1. Dirks M. L., Wall B. T., Snijders T., Ottenbros C. L., Verdijk L. B., van Loon L. J. (2014). Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol. 210, 628–641. 10.1111/apha.12200
    1. Dirks M. L., Wall B. T., van de Valk B., Holloway T. M., Holloway G. P., Chabowski A., et al. . (2016). One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes. [Epub ahead of print]. 10.2337/db15-1661
    1. Draznin B. (2006). Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55, 2392–2397. 10.2337/db06-0391
    1. Drummond M. J., Dickinson J. M., Fry C. S., Walker D. K., Gundermann D. M., Reidy P. T., et al. . (2012). Bed rest impairs skeletal muscle amino acid transporter expression, mtorc1 signaling, and protein synthesis in response to essential amino acids in older adults. Am. J. Physiol. Endocrinol. Metab. 302, E1113–E1122. 10.1152/ajpendo.00603.2011
    1. Evans W. J. (2010). Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am. J. Clin. Nutr. 91, 1123S–1127S. 10.3945/ajcn.2010.28608A
    1. Evans W. J., Lexell J. (1995). Human aging, muscle mass, and fiber type composition. J. Gerontol. Series A Biol. Sci. Med. Sci. 50, 11–16. 10.1093/gerona/50A.Special_Issue.11
    1. Ferrando A. A., Lane H. W., Stuart C. A., Davis-Street J., Wolfe R. R. (1996). Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am. J. Physiol. Endocrinol. Metab. 270, E627–E633.
    1. Fink R. I., Kolterman O. G., Griffin J., Olefsky J. M. (1983). Mechanisms of insulin resistance in ageing. J. Clin. Invest. 71, 1523–1535.
    1. Fitts R. H., Trappe S. W., Costill D. L., Gallagher P. M., Creer A. C., Colloton P. A., et al. . (2010). Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J. Physiol. 588, 3567–3592. 10.1113/jphysiol.2010.188508
    1. Fowles J. R., MacDougall J. D., Tarnopolsky M. A., Sale D. G., Roy B. D., Yarasheski K. E. (2000). The effects of acute passive stretch on muscle protein synthesis in humans. Can. J. Appl. Physiol. 25, 165–180. 10.1139/h00-012
    1. Gibson J. N., Halliday D., Morrison W. L., Stoward P. J., Hornsby G. A., Watt P. W., et al. . (1987). Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin. Sci. 72, 503–509. 10.1042/cs0720503
    1. Glover E. I., Phillips S. M., Oates B. R., Tang J. E., Tarnopolsky M. A., Selby A., et al. . (2008). Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J. Physiol. 586, 6049–6061. 10.1113/jphysiol.2008.160333
    1. Glover E. I., Yasuda N., Tarnopolsky M. A., Abadi A., Phillips S. M. (2010). Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl. Physiol. Nutr. Metab. 35, 125–133. 10.1139/H09-137
    1. Gordon B. S., Kelleher A. R., Kimball S. R. (2013). Regulation of muscle protein synthesis and the effects of catabolic states. Int. J. Biochem. Cell Biol. 45, 2147–2157. 10.1016/j.biocel.2013.05.039
    1. Greenhaff P. L., Karagounis L. G., Peirce N., Simpson E. J., Hazell M., Layfield R., et al. . (2008). Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 295, E595–E604. 10.1152/ajpendo.90411.2008
    1. Hackney K. J., Ploutz-Snyder L. L. (2012). Unilateral lower limb suspension: integrative physiological knowledge from the Past 20 Years (1991-2011). Eur. J. Appl. Physiol. 112, 9–22. 10.1007/s00421-011-1971-7
    1. Hebert S. L., Nair K. S. (2010). Protein and energy metabolism in type 1 diabetes. Clin. Nutr. 29, 1–11. 10.1016/j.clnu.2009.09.001
    1. Hvid L., Aagaard P., Justesen L., Bayer M. L., Andersen J. L., Ørtenblad N., et al. . (2010). Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J. Appl. Physiol. 109, 1628–1634. 10.1152/japplphysiol.00637.2010
    1. Jones S. W., Hill R. J., Krasney P. A., O'Conner B., Peirce N., Greenhaff P. L. (2004). Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J. 18, 1025–1027. 10.1096/fj.03-1228fje
    1. Kalyani R. R., Tra Y., Yeh H. C., Egan J. M., Ferrucci L., Brancati F. L. (2013). Quadriceps strength, quadriceps power, and gait speed in older, u.s. adults with diabetes mellitus: results from the national health and nutrition examination survey, 1999-2002. J. Am. Geriatr. Soc. 61, 769–775. 10.1111/jgs.12204
    1. Kavazis A. N., Talbert E. E., Smuder A. J., Hudson M. B., Nelson W. B., Powers S. K. (2009). Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic. Biol. Med. 46, 842–850. 10.1016/j.freeradbiomed.2009.01.002
    1. Kortebein P., Ferrando A., Lombeida J., Wolfe R., Evans W. J. (2007). Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297, 1772–1774. 10.1001/jama.297.16.1772-b
    1. Kumar V., Atherton P., Smith K., Rennie M. J. (2009). Human muscle protein synthesis and breakdown during and after exercise. J. Appl. Physiol. 106, 2026–2039. 10.1152/japplphysiol.91481.2008
    1. Kuo C. K., Lin L. Y., Yu Y. H., Wu K. H., Kuo H. K. (2009). Inverse association between insulin resistance and gait speed in nondiabetic older men: results from the U.S. National Health and Nutrition Examination Survey (NHANES) 1999-2002. BMC Geriatrics 9:49. 10.1186/1471-2318-9-49
    1. Lecker S. H., Goldberg A. L., Mitch W. E. (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807–1819. 10.1681/ASN.2006010083
    1. Leenders M., Verdijk L. B., van der Hoeven L., Adam J. J., van Kranenburg J., Nilwik R., et al. . (2013). Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J. Am. Med. Dir. Assoc. 14, 585–592. 10.1016/j.jamda.2013.02.006
    1. Mallinson J. E., Murton A. J. (2013). Mechanisms responsible for disuse muscle atrophy: potential role of protein provision and exercise as countermeasures. Nutrition 29, 22–28. 10.1016/j.nut.2012.04.012
    1. Martins A. R., Nachbar R. T., Gorjao R., Vinolo M. A., Festuccia W. T., Lambertucci R. H., et al. . (2012). Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 11:30. 10.1186/1476-511X-11-30
    1. Mikines K. J., Richter E. A., Dela F., Galbo H. (1991). Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. J. Appl. Physiol. 70, 1245–1254.
    1. Milan G., Romanello V., Pescatore F., Armani A., Paik J. H., Frasson L., et al. . (2015). Regulation of autophagy and the ubiquitin-proteasome system by the foxo transcriptional network during muscle atrophy. Nat. Commun. 6:6670. 10.1038/ncomms7670
    1. Min K., Smuder A. J., Kwon O. S., Kavazis A. N., Szeto H. H., Powers S. K. (2011). Mitochondrial-Targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J. Appl. Physiol. (1985) 111, 1459–1466. 10.1152/japplphysiol.00591.2011
    1. Miokovic T., Armbrecht G., Felsenberg D., Belavý D. L. (2012). Heterogeneous atrophy occurs within individual lower limb muscles during 60 days of bed rest. J. Appl. Physiol. 113, 1545–1559. 10.1152/japplphysiol.00611.2012
    1. Paddon-Jones D., Sheffield-Moore M., Zhang X. J., Volpi E., Wolf S. E., Aarsland A., et al. . (2004). Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am. J. Physiol. Endocrinol. Metab. 286, E321–E328. 10.1152/ajpendo.00368.2003
    1. Papaconstantinou J. (2010). Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol. Cell Endocrinol. 299, 89–100. 10.1016/j.mce.2008.11.025
    1. Park S. W., Goodpaster B. H., Lee J. S., Kuller L. H., Boudreau R., de Rekeneire N., et al. . (2009). Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32, 1993–1997. 10.2337/dc09-0264
    1. Park S. W., Goodpaster B. H., Strotmeyer E. S., Kuller L. H., Broudeau R., Kammerer C., et al. . (2007). Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care 30, 1507–1512. 10.2337/dc06-2537
    1. Pellegrino M. A., Desaphy J. F., Brocca L., Pierno S., Camerino D. C., Bottinelli R. (2011). Redox homeostasis, oxidative stress and disuse muscle atrophy. J. Physiol. 589, 2147–2160. 10.1113/jphysiol.2010.203232
    1. Phillips S. M., Glover E. I., Rennie M. J. (2009). Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J. Appl. Physiol. (1985) 107, 645–654. 10.1152/japplphysiol.00452.2009
    1. Powers S. K., Smuder A. J., Criswell D. S. (2011a). Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid. Redox Signal. 15, 2519–2528. 10.1089/ars.2011.3973
    1. Powers S. K., Smuder A. J., Judge A. R. (2012). Oxidative stress and disuse muscle atrophy: cause or consequence? Curr. Opin. Clin. Nutr. Metab. Care 15, 240–245. 10.1097/MCO.0b013e328352b4c2
    1. Powers S. K., Talbert E. E., Adhihetty P. J. (2011b). Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J. Physiol. 589, 2129–2138. 10.1113/jphysiol.2010.201327
    1. Powers S. K., Kavazi A. N., McClung J. M. (2014). Oxidative stress and disuse muscle atrophy. J. Appl. Physiol. 102, 2389–2397. 10.1152/japplphysiol.01202.2006
    1. Psatha M., Wu Z., Gammie F. M., Ratkevicius A., Wackerhage H., Lee J. H., et al. . (2012). A longitudinal mri study of muscle atrophy during lower leg immobilization following ankle fracture. J. Magn. Reson. Imaging 35, 686–695. 10.1002/jmri.22864
    1. Reggiani C. (2015). Not all disuse protocols are equal: new insight into the signalling pathways to muscle atrophy. J. Physiol. 593, 5227–5228. 10.1113/JP271613
    1. Reich K. A., Chen Y. W., Thompson P. D., Hoffman E. P., Clarkson P. M. (2010). Forty-Eight hours of unloading and 24 h of reloading lead to changes in global gene expression patterns related to ubiquitination and oxidative stress in humans. J. Appl. Physiol. 109, 1404–1415. 10.1152/japplphysiol.00444.2010
    1. Rennie M. J. (2009). Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl. Physiol. Nutr. Metab. 34, 377–381. 10.1139/H.09-012
    1. Rennie M. J., Selby A., Atherton P., Smith K., Kumar V., Glover E. L., et al. . (2010). Facts, noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy. Scand. J. Med. Sci. Sports 20, 5–9. 10.1111/j.1600-0838.2009.00967.x
    1. Roden M., Price T. B., Perseghin G., Petersen K. F., Rothman D. L., Cline G. W., et al. (1996). Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. 97, 2859–65. 10.1172/JCI118742
    1. Sandri M. (2010). Autophagy in skeletal muscle. FEBS Lett. 584, 1411–1416. 10.1016/j.febslet.2010.01.056
    1. Sandri M., Sandri C., Gilbert A., Skurk C., Calabria E., Picard A., et al. . (2004). Foxo transcription factors induce the atrophy- related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 1–2. 10.1016/j.jsbmb.2011.07.002.Identification
    1. Sasaki H., Kasagi F., Yamada M., Fujita S. (2007). Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am. J. Med. 120, 337–342. 10.1016/j.amjmed.2006.04.018
    1. Shulman G. I. (2000). Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176. 10.1172/JCI10583
    1. Stephens N. A., Gallagher I. J., Rooyackers O., Skipworth R. J., Tan B. H., Marstrand T., et al. . (2010). Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia. Genome Med. 2:122. 10.1186/gm122
    1. Suetta C., Frandsen U., Jensen L., Jensen M. M., Jespersen J. G., Hvid L. G., et al. . (2012). Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE 7:e51238. 10.1371/journal.pone.0051238
    1. Suetta C., Frandsen U., Mackey A. L., Jensen L., Hvid L. G., Bayer M. L., et al. . (2013). Ageing is associated with diminished muscle re-growth and myogenic precursor cell expansion early after immobility-induced atrophy in human skeletal muscle. J. Physiol. 591, 3789–3804. 10.1113/jphysiol.2013.257121
    1. Symons T. B., Sheffield-Moore M., Chinkes D. L., Ferrando A. A., Paddon-Jones D. (2009). Artificial gravity maintains skeletal muscle protein synthesis during 21 days of simulated microgravity. J. Appl. Physiol. (1985) 107, 34–38. 10.1152/japplphysiol.91137.2008
    1. Trappe S., Creer A., Minchev K., Slivka D., Louis E., Luden N., et al. . (2008). Human soleus single muscle fiber function with exercise or nutrition countermeasures during 60 days of bed rest. Am. J. Physiol. 294, R939–R947. 10.1152/ajpregu.00761.2007
    1. Urso M. L., Scrimgeour A. G., Chen Y. W., Thompson P. D., Clarkson P. M. (2006). Analysis of human skeletal muscle after 48h immobilization reveals alterations in mrna and protein for extracellular matrix components. J. Appl. Physiol. 101, 1136–1148. 10.1152/japplphysiol.00180.2006
    1. Vandenburgh H., Chromiak J., Shansky J., Del Tatto M., Lemaire J. (1999). Space travel directly induces skeletal muscle atrophy. FASEB J. 13, 1031–1038.
    1. Verdijk L. B., Dirks M. L., Snijders T., Prompers J. J., Beelen M., Jonkers R. A., et al. . (2012). Reduced satellite cell numbers with spinal cord injury and aging in humans. Med. Sci. Sports Exerc. 44, 2322–2330. 10.1249/MSS.0b013e3182667c2e
    1. Vigelsø A., Gram M., Dybboe R., Kuhlman A. B., Prats C., Greenhaff P. L., et al. . (2016). The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate-intensity exercise in human skeletal muscle. J. Physiol. 594, 2339–2358. 10.1113/JP271712
    1. Volpato S., Bianchi L., Lauretani F., Lauretani F., Bandinelli S., Guralnik J. M., et al. . (2012). Role of muscle mass and muscle quality in the association between diabetes and gait speed. Diabetes Care 35, 1672–1679. 10.2337/dc11-2202
    1. Wackerhage H., Ratkevicius A. (2008). Signal transduction pathways that regulate muscle growth. Essays Biochem. 44, 99–108. 10.1042/BSE0440099
    1. Wall B. T., Dirks M. L., Verdijk L. B., Snijders T., Hansen D., Vranckx P., et al. . (2012). Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am. J. Physiol. 303, E614–E623. 10.1152/ajpendo.00138.2012
    1. Wall B. T., Snijders T., Senden J. M., Ottenbros C. L., Gijsen A. P., Verdijk L. B., et al. . (2013). Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men. J. Clin. Endocrinol. Metab. 98, 4872–4881. 10.1210/jc.2013-2098
    1. West D. W., Burd N. A., Coffey V. G., Baker S. K., Burke L. M., Hawley J. A., et al. . (2011). Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am. J. Clin.Nutr. 94, 795–803. 10.3945/ajcn.111.013722
    1. Wilkes E. A., Selby A. L., Atherton P. J., Patel R., Rankin D., Smith K., et al. . (2009). Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am. J. Clin. Nutr. 90, 1343–1350. 10.3945/ajcn.2009.27543
    1. Wilkinson S. B., Phillips S. M., Atherton P. J., Patel R., Yarasheski K. E., Tarnopolsky M. A., et al. . (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. 586, 3701–3717. 10.1113/jphysiol.2008.153916
    1. Workeneh B., Bajaj M. (2013). The regulation of muscle protein turnover in diabetes. Int. J. Biochem. Cell Biol. 45, 2239–2244. 10.1016/j.biocel.2013.06.028
    1. Wu C. L., Kandarian S. C., Jackman R. W. (2011). Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and bcl-3. PloS ONE 6:e16171. 10.1371/journal.pone.0016171
    1. Zinna E. M., Yarasheski K. E. (2003). Exercise treatment to counteract protein wasting of chronic diseases. Curr. Opin. Clin. Nutr. Metab. Care 6, 87–93. 10.1097/00075197-200301000-00013
    1. Zuo L., Pannell B. K. (2015). Redox characterization of functioning skeletal muscle. Front. Physiol. 6:338. 10.3389/fphys.2015.00338

Source: PubMed

3
Předplatit