Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy

Keith R Lohse, Courtney G E Hilderman, Katharine L Cheung, Sandy Tatla, H F Machiel Van der Loos, Keith R Lohse, Courtney G E Hilderman, Katharine L Cheung, Sandy Tatla, H F Machiel Van der Loos

Abstract

Background: The objective of this analysis was to systematically review the evidence for virtual reality (VR) therapy in an adult post-stroke population in both custom built virtual environments (VE) and commercially available gaming systems (CG).

Methods: MEDLINE, CINAHL, EMBASE, ERIC, PSYCInfo, DARE, PEDro, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews were systematically searched from the earliest available date until April 4, 2013. Controlled trials that compared VR to conventional therapy were included. Population criteria included adults (>18) post-stroke, excluding children, cerebral palsy, and other neurological disorders. Included studies were reported in English. Quality of studies was assessed with the Physiotherapy Evidence Database Scale (PEDro).

Results: Twenty-six studies met the inclusion criteria. For body function outcomes, there was a significant benefit of VR therapy compared to conventional therapy controls, G = 0.48, 95% CI = [0.27, 0.70], and no significant difference between VE and CG interventions (P = 0.38). For activity outcomes, there was a significant benefit of VR therapy, G = 0.58, 95% CI = [0.32, 0.85], and no significant difference between VE and CG interventions (P = 0.66). For participation outcomes, the overall effect size was G = 0.56, 95% CI = [0.02, 1.10]. All participation outcomes came from VE studies.

Discussion: VR rehabilitation moderately improves outcomes compared to conventional therapy in adults post-stroke. Current CG interventions have been too few and too small to assess potential benefits of CG. Future research in this area should aim to clearly define conventional therapy, report on participation measures, consider motivational components of therapy, and investigate commercially available systems in larger RCTs.

Trial registration: Prospero CRD42013004338.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Screening of articles.
Figure 1. Screening of articles.
Four-phase PRISMA flow-diagram for study collection , showing the number of studies identified, screened, eligible, and included in the review and analysis.
Figure 2. Body function outcomes in VE…
Figure 2. Body function outcomes in VE studies.
The funnel plot (top) for body function outcomes showing effect-sizes (G) as a function of precision (standard error) in each virtual environment study. The forest plot (bottom) showing the effect-sizes and 95% confidence intervals for each study and the summary effect-size from the random-effects model. Positive values show a difference in favour of VE therapy. Negative values show a difference in favour of CT. Abbreviations: VE, virtual environments; RE, random effects.
Figure 3. Body function outcomes in CG…
Figure 3. Body function outcomes in CG studies.
The funnel plot (top) for body function outcomes showing effect-sizes (G) as a function of precision (standard error) in each commercial gaming study. The forest plot (bottom) showing the effect-sizes and 95% confidence intervals for each study and the summary effect-size from the random-effects model. Positive values show a difference in favour of CG therapy. Negative values show a difference in favour of CT. Abbreviations: CG, commercial gaming; RE, random effects.
Figure 4. Activity outcomes in VE studies.
Figure 4. Activity outcomes in VE studies.
The funnel plot (top) for activity outcomes showing effect-sizes (G) as a function of precision (standard error) in each virtual environment study. The forest plot (bottom) shows the effect-sizes and 95% confidence intervals for each study and the summary effect-size from the random-effects model. Positive values show a difference in favour of VE therapy. Negative values show a difference in favour of CT. Abbreviations: RE, random effects.
Figure 5. Activity outcomes in CG studies.
Figure 5. Activity outcomes in CG studies.
The funnel plot (top) for activity outcomes showing effect-sizes (G) as a function of precision (standard error) in each commercial gaming study. The forest plot (bottom) shows the effect-sizes and 95% confidence intervals for each study and the summary effect-size from the random-effects model. Positive values show a difference in favour of CG therapy. Negative values show a difference in favour of CT. Abbreviations: CG, commercial gaming; RE, random effects.
Figure 6. Participation outcomes in VE studies.
Figure 6. Participation outcomes in VE studies.
The funnel plot (top) for participation outcomes showing effect-sizes (G) as a function of precision (standard error) in each study. The forest plot (bottom) shows the effect-sizes and 95% confidence intervals for each study and the summary effect-size from the random-effects model. Positive values show a difference in favour of VE therapy. Negative values show a difference in favour of CT. Abbreviations: VE, virtual environments; RE, random effects.

References

    1. Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S (2005) Factors influencing stroke survivors' quality of life during subacute recovery. Stroke 36(7): 1480–4.
    1. Nudo RJ, Milliken GW (1996) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75(5): 2144–9.
    1. Plautz EJ, Milliken GW, Nudo RJ (2000) Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem Jul 74(1): 27–55.
    1. Kwakkel G (2006) Impact of intensity of practice after stroke: Issues for consideration. Disabil Rehabil 28(July): 823–30.
    1. Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, et al. (2009) Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil 90(10): 1692–8.
    1. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8(8): 741–54.
    1. Foley N, Teasell R, Bhogal S, Speechley M (2003) The efficacy of stroke rehabilitation. Top Stroke Rehabil 10(2): 1–18.
    1. Adamovich SV, Fluet GG, Tunik E, Merians AS (2009) Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25: 29–44.
    1. Mirelman A, Bonato P, Deutsch JE (2009) Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 40(1): 169–74.
    1. Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, et al. (2009) Optimising engagement strategies for stroke rehabilitation using serious games. Visual Computing 25: 1085–99.
    1. Shirzad N, Van der Loos HFM (2012) Error amplification to promote motor learning and motivation in therapy robotics. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 2012 Aug 28 - Sep 1; San Diego, USA: IEEE Engineering in Medicine and Biology Society.
    1. Deutsch JE, Merians AS, Adamovich S, Poizner H, Burdea GC (2004) Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restor Neurol Neurosci 22(3–5): 371–386.
    1. Patton J, Dawe G, Scharver C, Mussa-Ivaldi F, Kenyon R (2006) Robotics and virtual reality: a perfect marriage for motor control research and rehabilitation. Assist Technol 18: 181–195.
    1. Kim EK, Kang JH, Park JS, Jung BH (2012) Clinical feasibility of interactive commercial nintendo gaming for chronic stroke rehabilitation. J Phys Ther Sci 24: 901–3.
    1. Gil-Gómez J-A, Lloréns R, Alcañiz M, Colomer C (2011) Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil 8(1): 30.
    1. Saposnik G, Teasell R, Mamdani M, Hall J, Mcilroy W, et al. (2010) Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke 1477–84.
    1. Yavuzer G, Senel A, Atay MB, Stam HJ (2008) "Playstation eyetoy games" improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. Eur J Phys Rehabil Med 44(3): 237–44.
    1. Lohse KR, Shirzad N, Verster A, Hodges NJ, Van der Loos HFM (2013) Videogames and rehabilitation: Using design principles to enhance patient engagement. J Neurol Phys Ther 37: 166–175.
    1. Saposnik G, Levin M (2011) Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke 42(5): 1380–6.
    1. Laver K, George S, Thomas S, Deutsch JE, Crotty M (2011) Virtual reality for stroke rehabilitation. Stroke 43(2): e20–e21.
    1. Henderson A, Korner-Bitensky N, Levin M (2007) Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil 14(2): 52–61.
    1. Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23(5): 505–14.
    1. Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, et al. (2009) Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med 41(12): 1016–102.
    1. Moher D (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med 151(4): 264.
    1. Crosbie JH, Lennon S, Mcgoldrick MC, Mcneill MDJ, Burke JW, et al. (2008) Virtual reality in the rehabilitation of the upper limb after hemiplegic stroke: a randomised pilot study. Clin Rehabil 229–35.
    1. Yang S, Hwang W-H, Tsai Y-C, Liu F-K, Hsieh L-F, et al. (2011) Improving balance skills in patients who had stroke through virtual reality treadmill training. Am J Phys Med Rehabil 90(12): 969–78.
    1. Subramanian SK, Lourenço CB, Chilingaryan G, Sveistrup H, Levin MF (2013) Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair 27(1): 13–23.
    1. Borenstein M, Hedges L V., Higgins JPT, Rothstein HR (2011) Introduction to meta-analysis [eBook online]. John Wiley & Sons [cited 2013 Jul 20]. p. 450. Available from: URL:
    1. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor Package. J Stat Softw 36(3): 1–48.
    1. Jung J (2012) Effects of virtual-reality treadmill training on balance and balance self efficacy in stroke patients with a history of falling. J Phys Ther Sci 24(5): 1133–6.
    1. Yang Y-R, Tsai M-P, Chuang T-Y, Sung W-H, Wang R-Y (2008) Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture 28(2): 201–6.
    1. Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS (2008) Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovasc Dis 26(3): 289–96.
    1. Kim JH, Jang SH, Kim CS, Jung JH, You JH (2009) Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil 88(9): 693–701.
    1. Kihoon J (2012) Effects of virtual reality-based rehabilitation on upper extremity function and visual perception in stroke patients: A randomized control trial. J Phys Ther Sci 24: 1205–8.
    1. Kwon J-S, Park M-J, Yoon I-J, Park S-H (2012) Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabil 31(4): 379–85.
    1. Cho KH, Lee WH (2013) Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil 92(5): 371–84.
    1. Cikajlo I, Rudolf M, Goljar N, Burger H, Matjačić Z (2012) Telerehabilitation using virtual reality task can improve balance in patients with stroke. Disabil Rehabil 34(1): 13–8.
    1. Crosbie JH, Lennon S, McGoldrick MC, McNeill MDJ, McDonough SM (2012) Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil 26(9): 798–806.
    1. Da Silva Cameirão M, Bermúdez I, Badia S, Duarte E, Verschure PF (2011) Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci 29(5): 287–98.
    1. In TS, Jung KS, Lee SW, Song CH (2012) Virtual reality reflection therapy improves motor recovery and motor function in the upper extremities of people with chronic stroke. J Phys Ther Sci 24(4): 339–43.
    1. Katz N, Ring H, Naveh Y, Kizony R, Feintuch U, et al. (2005) Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disabil Rehabil 27(20): 1235–43.
    1. Kiper P, Piron L, Turolla A, Sto J, Tonin P (2011) The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke. Neurol Neurochir Pol 436–44.
    1. Lam YS, Man DWK, Tam SF, Weiss PL (2006) Virtual reality training for stroke rehabilitation. NeuroRehabil 21(3): 245–53.
    1. Mirelman A, Patritti BL, Bonato P, Deutsch JE (2010) Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 31(4): 433–7.
    1. Piron L, Tombolini P, Turolla A, Zucconi C, Agostini M, et al. (2007) Reinforced feedback in virtual environment facilitates the arm motor recovery in patients after a recent stroke. In: Virtual Rehabilitation [serial online]. 2007 Sep 27–29; Venice, Italy. 2007. p 121–3. Available from: URL:
    1. Piron L, Turolla A, Agostini M, Tonin P, Dam M (2010) Motor learning principles for rehabilitation: A pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair 24(6): 501–8.
    1. You SH, Jang SH, Kim Y-H, Hallett M, Ahn SH, et al. (2005) Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 36(6): 1166–71.
    1. Taylor MJD, McCormic D, Shawis T, Impson R, Griffin M (2011) Activity-promoting gaming systems in exercise and rehabilitation. J Rehabil Res Dev 48(10): 1171–1186.
    1. Deutsch JE, Brettler A, Smith C, Welsh J, John R, et al. (2011) Nintendo Wii Sports and Wii Fit game analysis, validation, and application to stroke rehabilitation. Top Stroke Rehabil 18)6): 701–19.
    1. Mang CS, Campbell KL, Ross CJD, Boyd LA (2013) Promoting neuroplasticity for motor rehabilitation after stroke: Considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther [online first] [cited 2013 Sep 14]. Available from: URL:
    1. Bailey BW, McInnis K (2001) Energy cost of exergaming: A comparison of the energy cost of 6 forms of exergaming. Arch Pediatr Adolesc Med 165(7): 597–602.
    1. Agmon M, Perry CK, Phelan E, Demiris G, Nguyen HQ (2011) A pilot study of Wii Fit exergames to improve balance in older adults. J Geriatr Phys Ther 34: 161–7.
    1. Nintendo Co., Ltd. Consolidated sales transition by region. Nintendo Web site: . Accessed August 21, 2013.
    1. . GestureTek IREX systems. Web site: . Accessed August 21, 2013.
    1. World Health Organization (2002) Towards a common language for functioning, disability and health. World Health Organization Web site: . Accessed September 14, 2013.
    1. Sullivan KJ, Cen SY (2011) Model of Disablement and Recovery: Knowledge translation in rehabilitation research and practice. Phys Ther 91: 1892–1904.
    1. Harding J, Harding K, Jamieson P, Mullally M, Politi C, et al. (2009) Children with disabilities' perceptions of activity participation and environments: A pilot study. Can J Occup Ther 76(3): 133–144.
    1. Majnemer A, Shevall M, Law M, Birnbaum R, Chilingaryan G, et al. (2008) Participation and enjoyment of leisure activities in school- aged children with cerebral palsy. Dev Med Child Neurol 50: 751–758.

Source: PubMed

3
Předplatit