Safety of DW-MSC infusion in patients with low clinical risk COVID-19 infection: a randomized, double-blind, placebo-controlled trial

Muhammad Karyana, Irawaty Djaharuddin, Lutfah Rif'ati, Mansyur Arif, Mi Kyung Choi, Nova Angginy, Aeri Yoon, Jumi Han, Fonny Josh, Dona Arlinda, Asvin Narulita, Faisal Muchtar, Rizki Auliah Bakri, S Irmansyah, Muhammad Karyana, Irawaty Djaharuddin, Lutfah Rif'ati, Mansyur Arif, Mi Kyung Choi, Nova Angginy, Aeri Yoon, Jumi Han, Fonny Josh, Dona Arlinda, Asvin Narulita, Faisal Muchtar, Rizki Auliah Bakri, S Irmansyah

Abstract

Background: Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have been proposed to have therapeutic potential to improve clinical outcomes in COVID-19. However, the safety and efficacy profile of MSC infusion therapy in patients with non-severe COVID-19 infection has not been completely established; there is, in particular, a substantial void in the literature on dose-dependent studies of MSC infusion in patients with low clinical risk COVID-19 infection.

Methods: This phase 1 double-blind, placebo-controlled, randomized clinical trial examines the safety, feasibility, and tolerability of 2 doses (high and low) of DW-MSC in patients with low clinical risk COVID-19. A total of 9 patients were enrolled in this study and randomized into low-dose (TL), high-dose (TH), and placebo (C) groups. Subjects in the TL and TH groups received single intravenous infusions of 5.0 × 107 cells and 1.0 × 108 cells, respectively. The main outcome was the occurrence of treatment-emergent adverse events (TEAE) during the 28-day study period. Vital signs and various inflammatory markers were also monitored weekly during the observation period.

Results: There were no apparent differences in clinical characteristics between study groups (TL, TH, and C) at baseline. All patients did not show the progression of severity during the study period. During the course of the study, 6 episodes of TEAE were observed in 5 subjects; however, none of the TEAEs were severe. During the follow-up period, 8 subjects recovered and were discharged from the hospital without complications. A subject exhibited abnormal liver function biomarkers at the end of the study period. Changes in inflammatory markers throughout the clinical course were not vastly different across study groups.

Conclusions: Our clinical trial has provided reliable results regarding the safety of MSCs in low clinical risk COVID-19 subjects treated with MSCs. However, further confirmation of the therapeutic efficacy aspects of MSC will require large-scale randomized controlled trials in subjects with varying severity profiles for COVID-19.

Trial registration: ClinicalTrials.gov, NCT04535856. Registered 2 September 2020, https://ichgcp.net/clinical-trials-registry/NCT04535856.

Keywords: Adverse events; COVID-19; Cytokines; Mesenchymal stem cells; SARS-CoV-2; Safety.

Conflict of interest statement

The author(s) declared potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Jumi Han, Aeri Yoon, and Mi Kyung Choi being employed by Daewoong Pharmaceutical Co Ltd; and Nova Angginy, being employed by Daewoong Infion. Authors from Daewoong were not involved in data collection and analysis. No other potential conflict of interest relevant to this article was reported.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Enrolment, randomization, and study flow diagram

References

    1. Moll G, Drzeniek N, Kamhieh-Milz J, Geissler S, Volk H-D, Reinke P. MSC Therapies for COVID-19: importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Front Immunol. 2020;11:1091. doi: 10.3389/fimmu.2020.01091.
    1. Chen Y, Zhang Q, Peng W, Liu D, You Y, Liu X, Tang S, Zhang T. Efficacy and safety of mesenchymal stem cells for the treatment of patients infected with COVID-19: a systematic review and meta-analysis protocol. BMJ Open. 2020;10(12):e042085. doi: 10.1136/bmjopen-2020-042085.
    1. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014;6(5):552–570. doi: 10.4252/wjsc.v6.i5.552.
    1. Sadeghi S, Soudi S, Shafiee A, Hashemi SM. Mesenchymal stem cell therapies for COVID-19: current status and mechanism of action. Life Sci. 2020;262:118493–118493. doi: 10.1016/j.lfs.2020.118493.
    1. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11(2):216. doi: 10.14336/AD.2020.0228.
    1. Chuang H-M, Shih TE, Lu K-Y, Tsai S-F, Harn H-J, Ho L-I. Mesenchymal Stem Cell Therapy of Pulmonary Fibrosis: Improvement with Target Combination. Cell Transplant. 2018;27(11):1581–1587. doi: 10.1177/0963689718787501.
    1. Harrell CR, Sadikot R, Pascual J, Fellabaum C, Jankovic MG, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal stem cell-based therapy of inflammatory lung diseases: current understanding and future perspectives. Stem Cells Int. 2019;2019:1–14.
    1. Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, Rogers AJ, Gotts JE, Wiener-Kronish JP, Bajwa EK, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2019;7(2):154–162. doi: 10.1016/S2213-2600(18)30418-1.
    1. Namba F. Mesenchymal stem cells for the prevention of bronchopulmonary dysplasia. Pediatr Int. 2019;61(10):945–950. doi: 10.1111/ped.14001.
    1. Suvakov S, Richards C, Nikolic V, Simic T, McGrath K, Krasnodembskaya A, McClements L. Emerging therapeutic potential of mesenchymal stem/stromal cells in preeclampsia. Curr Hypertens Rep. 2020;22(5):37. doi: 10.1007/s11906-020-1034-8.
    1. Thakkar UG, Trivedi HL, Vanikar AV, Dave SD. Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow–derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy. 2015;17(7):940–947. doi: 10.1016/j.jcyt.2015.03.608.
    1. Cho J, D'Antuono M, Glicksman M, Wang J, Jonklaas J. A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells. 2018;7(4):82–93.
    1. Xu P, Yang X. The efficacy and safety of mesenchymal stem cell transplantation for spinal cord injury patients: a meta-analysis and systematic review. Cell Transplant. 2019;28(1):36–46. doi: 10.1177/0963689718808471.
    1. Feng Y, Huang J, Wu J, Xu Y, Chen B, Jiang L, Xiang H, Peng Z, Wang X. Safety and feasibility of umbilical cord mesenchymal stem cells in patients with COVID-19 pneumonia: a pilot study. Cell Prolif. 2020;53(12):258. doi: 10.1111/cpr.12947.
    1. Meng F, Xu R, Wang S, Xu Z, Zhang C, Li Y, Yang T, Shi L, Fu J, Jiang T, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduct Target Ther. 2020;5(1):172. doi: 10.1038/s41392-020-00286-5.
    1. Lanzoni G, Linetsky E, Correa D, Messinger Cayetano S, Alvarez RA, Kouroupis D, Alvarez Gil A, Poggioli R, Ruiz P, Marttos AC, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021;10(5):660–673. doi: 10.1002/sctm.20-0472.
    1. Shi L, Huang H, Lu X, Yan X, Jiang X, Xu R, Wang S, Zhang C, Yuan X, Xu Z, et al. Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct Target Ther. 2021;6(1):58. doi: 10.1038/s41392-021-00488-5.
    1. Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? When? And how much? Cytotherapy. 2021;2021:S1465324921002346.
    1. Cao Y, Wu H, Zhai W, Wang Y, Li M, Li M, Yang L, Tian Y, Song Y, Li J, et al. A safety consideration of mesenchymal stem cell therapy on COVID-19. Stem Cell Res. 2020;49:102066. doi: 10.1016/j.scr.2020.102066.
    1. Lohan P, Treacy O, Griffin MD, Ritter T, Ryan AE. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: are we still learning? Front Immunol. 2017;8:1626. doi: 10.3389/fimmu.2017.01626.
    1. Thompson M, Mei SHJ, Wolfe D, Champagne J, Fergusson D, Stewart DJ, Sullivan KJ, Doxtator E, Lalu M, English SW, et al. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. EClinicalMedicine. 2020;19:100249. doi: 10.1016/j.eclinm.2019.100249.
    1. Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee J-W, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32. doi: 10.1016/S2213-2600(14)70291-7.
    1. Adas G, Cukurova Z, Yasar KK, Yilmaz R, Isiksacan N, Kasapoglu P, Yesilbag Z, Koyuncu ID, Karaoz E. The systematic effect of mesenchymal stem cell therapy in critical COVID-19 patients: a prospective double controlled trial. Cell Transplant. 2021;30:9636897211024942. doi: 10.1177/09636897211024942.
    1. Hashemian SR, Aliannejad R, Zarrabi M, Soleimani M, Vosough M, Hosseini SE, Hossieni H, Keshel SH, Naderpour Z, Hajizadeh-Saffar E, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series. Stem Cell Res Ther. 2021;12(1):91. doi: 10.1186/s13287-021-02165-4.
    1. Kouroupis D, Lanzoni G, Linetsky E, Messinger Cayetano S, Wishnek Metalonis S, Leñero C, Stone LD, Ruiz P, Correa D, Ricordi C. Umbilical Cord-derived mesenchymal stem cells modulate TNF and soluble TNF Receptor 2 (sTNFR2) in COVID-19 ARDS patients. Eur Rev Med Pharmacol Sci. 2021;25(12):4435–4438.
    1. Saleh M, Vaezi AA, Aliannejad R, Sohrabpour AA, Kiaei SZF, Shadnoush M, Siavashi V, Aghaghazvini L, Khoundabi B, Abdoli S, et al. Cell therapy in patients with COVID-19 using Wharton's jelly mesenchymal stem cells: a phase 1 clinical trial. Stem Cell Res Ther. 2021;12(1):410. doi: 10.1186/s13287-021-02483-7.
    1. Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells Dev. 2020;29(12):747–754. doi: 10.1089/scd.2020.0080.
    1. Shu L, Niu C, Li R, Huang T, Wang Y, Huang M, Ji N, Zheng Y, Chen X, Shi L, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):361. doi: 10.1186/s13287-020-01875-5.
    1. Xu X, Jiang W, Chen L, Xu Z, Zhang Q, Zhu M, Ye P, Li H, Yu L, Zhou X, et al. Evaluation of the safety and efficacy of using human menstrual blood-derived mesenchymal stromal cells in treating severe and critically ill COVID-19 patients: an exploratory clinical trial. Clin Transl Med. 2021;11(2):e297.
    1. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S, et al. Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11(2):216–228. doi: 10.14336/AD.2020.0228.
    1. Daewoong: bio regenerative industry issue keyword, ‘stem cells’—from COVID-19 treatments to bone regeneration. In: Daewoong Indonesia. 2020.
    1. Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, Cai Q, Dong S, Hu S, Wang W, et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study. J Transl Med. 2020;18(1):406. doi: 10.1186/s12967-020-02571-x.
    1. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, Zhang P, Liu X, Gao G, Liu F, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–1130. doi: 10.1080/22221751.2020.1770129.
    1. Haji Abdolvahab M, Moradi-Kalbolandi S, Zarei M, Bose D, Majidzadeh AK, Farahmand L. Potential role of interferons in treating COVID-19 patients. Int Immunopharmacol. 2021;90:107171. doi: 10.1016/j.intimp.2020.107171.
    1. Levy DE, García-Sastre A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 2001;12(2–3):143–156. doi: 10.1016/S1359-6101(00)00027-7.
    1. Yin K, Gribbin E, Wang H. Interferon-gamma inhibition attenuates lethality after cecal ligation and puncture in rats: implication of high mobility group box-1. Shock (Augusta, Ga) 2005;24(4):396–401. doi: 10.1097/01.shk.0000175556.03300.c6.

Source: PubMed

3
Předplatit