Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham-controlled study

Anthony Decaux, Jamie J Edwards, Harry T Swift, Philip Hurst, Jordan Hopkins, Jonathan D Wiles, Jamie M O'Driscoll, Anthony Decaux, Jamie J Edwards, Harry T Swift, Philip Hurst, Jordan Hopkins, Jonathan D Wiles, Jamie M O'Driscoll

Abstract

Isometric exercise training (IET) is increasingly cited for its role in reducing resting blood pressure (BP). Despite this, few studies have investigated a potential sham effect attributing to the success of IET, thus dictating the aim of the present study. Thirty physically inactive males (n = 15) and females (n = 15) were randomly assigned into three groups. The IET group completed a wall squat intervention at 95% peak heart rate (HR) using a prescribed knee joint angle. The sham group performed a parallel intervention, but at an intensity (<75% peak HR) previously identified to be inefficacious over a 4-week training period. No-intervention controls maintained their normal daily activities. Pre- and post-measures were taken for resting and continuous blood pressure and cardiac autonomic modulation. Resting clinic and continuous beat-to-beat systolic (-15.2 ± 9.2 and -7.3 ± 5.6 mmHg), diastolic (-4.6 ± 5 and -4.5 ± 5.1), and mean (-7 ± 4.2 and -7.5 ± 5.3) BP, respectively, all significantly decreased in the IET group compared to sham and no-intervention control. The IET group observed a significant decrease in low-frequency normalized units of heart rate variability concurrent with a significant increase in high-frequency normalized units of heart rate variability compared to both the sham and no-intervention control groups. The findings of the present study reject a nonspecific effect and further support the role of IET as an effective antihypertensive intervention. Clinical Trials ID: NCT05025202.

Keywords: blood pressure; isometric exercise.

Conflict of interest statement

There is no conflict of interest.

© 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Figures

FIGURE 1
FIGURE 1
Mean continuous systolic (a), mean (b), and diastolic (c) blood pressure change values for the isometric exercise training group (open circles), no‐intervention control group (closed circles), and sham group (arrows). Note: Error bars indicate standard error of the mean; *< 0.05 between the isometric exercise training group and both control and sham condition
FIGURE 2
FIGURE 2
Illustrates the density distribution, average, and individual delta change in continuous systolic (a), mean (b), and diastolic (c) blood pressure following isometric exercise training, control, and sham groups

References

    1. Akselrod, S. , Gordon, D. , Ubel, F. , Shannon, D. , Berger, A. , & Cohen, R. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat‐to‐beat cardiovascular control. Science, 213(4504), 220–222. 10.1126/science.6166045
    1. Beedie, C. , Benedetti, F. , Barbiani, D. , Camerone, E. , Cohen, E. , Coleman, D. , Davis, A. , Elsworth‐Edelsten, C. , Flowers, E. , Foad, A. , Harvey, S. , Hettinga, F. , Hurst, P. , Lane, A. , Lindheimer, J. , Raglin, J. , Roelands, B. , Schiphof‐Godart, L. , & Szabo, A. (2018). Consensus statement on placebo effects in sports and exercise: The need for conceptual clarity, methodological rigour, and the elucidation of neurobiological mechanisms. European Journal of Sport Science, 18, 1383–1389. 10.1080/17461391.2018.1496144
    1. Brunström, M. , & Carlberg, B. (2018). ‘Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels a systematic review and meta‐analysis. JAMA Internal Medicine, 28–36. 10.1001/jamainternmed.2017.6015
    1. Carlson, D. J. , Dieberg, G. , Hess, N. C. , Millar, P. J. , & Smart, N. A. (2014). Isometric exercise training for blood pressure management: A systematic review and meta‐analysis. Mayo Clinic Proceedings, 89(3), 327–334. 10.1016/j.mayocp.2013.10.030
    1. Cornelissen, V. A. , & Smart, N. A. (2013). Exercise training for blood pressure: A systematic review and meta‐analysis. Journal of the American Heart Association, 2, e004473. 10.1161/JAHA.112.004473
    1. Ettehad, D. , Emdin, C. A. , Kiran, A. , Anderson, S. G. , Callender, T. , Emberson, J. , Chalmers, J. , Rodgers, A. , & Rahimi, K. (2016). Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta‐analysis. The Lancet, 387(10022), 957–967. 10.1016/S0140-6736(15)01225-8
    1. Fudim, M. , Ali‐Ahmed, F. , Patel, M. R. , & Sobotka, P. A. (2019). Sham trials: Benefits and risks for cardiovascular research and patients. The Lancet, 393(10186), 2104–2106. 10.1016/S0140-6736(19)31120-1
    1. Goldring, N. , Wiles, J. D. , & Coleman, D. (2014). The effects of isometric wall squat exercise on heart rate and blood pressure in a normotensive population. Journal of Sports Sciences, 32(2), 129–136. 10.1080/02640414.2013.809471
    1. Goldstein, D. S. , Bentho, O. , Park, M.‐Y. , & Sharabi, Y. (2011). Low‐frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96, 1255–1261. 10.1113/expphysiol.2010.056259
    1. Hu, H. , Zhang, J. , Wang, Y. , Tian, Z. , Liu, D. , Zhang, G. , Gu, G. , Zheng, H. , Xie, R. , & Cui, W. (2017). Impact of baseline blood pressure on the magnitude of blood pressure lowering by nifedipine gastrointestinal therapeutic system: Refreshing the wilder’s principle. Drug Design, Development and Therapy, 11, 3179–3186. 10.2147/DDDT.S143551
    1. Hurst, P. , Schipof‐Godart, L. , Szabo, A. , Raglin, J. , Hettinga, F. , Roelands, B. , Lane, A. , Foad, A. , Coleman, D. , & Beedie, C. (2019). The Placebo and Nocebo effect on sports performance: A systematic review. European Journal of Sport Science, 20(3), 279–292. 10.1080/17461391.2019.1655098
    1. Inder, J. D. , Carlson, D. J. , Dieberg, G. , McFarlane, J. R. , Hess, N. C. L. , & Smart, N. A. (2016). Isometric exercise training for blood pressure management: A systematic review and meta‐analysis to optimize benefit. Hypertension Research, 39(2), 89–94. 10.1038/hr.2015.111
    1. Law, M. R. , Morris, J. K. , & Wald, N. J. (2009). Use of blood pressure lowering drugs in the prevention of cardiovascular disease: Meta‐analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ, 338(7705), 1245. 10.1136/bmj.b1665
    1. Li, C. , Zheng, C. , & Tai, C. (1995). Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical Engineering, 42(1), 21–28. 10.1109/10.362922
    1. Lim, S. S. , Vos, T. , Flaxman, A. D. , Danaei, G. , Shibuya, K. , Adair‐Rohani, H. , AlMazroa, M. A. , Amann, M. , Anderson, H. R. , Andrews, K. G. , Aryee, M. , Atkinson, C. , Bacchus, L. J. , Bahalim, A. N. , Balakrishnan, K. , Balmes, J. , Barker‐Collo, S. , Baxter, A. , Bell, M. L. , … Ezzati, M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2224–2260. 10.1016/S0140-6736(12)61766-8
    1. Lindheimer, J. B. , O’Connor, P. J. , & Dishman, R. K. (2015). Quantifying the placebo effect in psychological outcomes of exercise training: A meta‐analysis of randomized trials. Sports Medicine, 45, 693–711. 10.1007/s40279-015-0303-1
    1. López‐Valenciano, A. , Ruiz‐Pérez, I. , Ayala, F. , Sánchez‐Meca, J. , & Vera‐Garcia, F. J. (2019). Updated systematic review and meta‐analysis on the role of isometric resistance training for resting blood pressure management in adults. Journal of Hypertension, 37, 1320–1333. 10.1097/HJH.0000000000002022
    1. Malik, M. , Thomas Bigger, J. , John Camm, A. , Kleiger, R. E. , Malliani, A. , Moss, A. J. , & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. 10.1161/01.cir.93.5.1043
    1. Moore, M. N. , Atkins, E. R. , Salam, A. , Callisaya, M. L. , Hare, J. L. , Marwick, T. H. , Nelson, M. R. , Wright, L. , Sharman, J. E. , & Rodgers, A. (2019). Regression to the mean of repeated ambulatory blood pressure monitoring in five studies. Journal of Hypertension, 37(1), 24–29. 10.1097/HJH.0000000000001977
    1. O'Driscoll, J. M. , Boucher, C. , Vilda, M. , Taylor, K. A. , & Wiles, J. D. (2021). Continuous cardiac autonomic and haemodynamic responses to isometric exercise in females. European Journal of Applied Physiology, 121(1), 319–329. 10.1007/s00421-020-04525-z
    1. O'Driscoll, J. M. , Taylor, K. A. , Wiles, J. D. , Coleman, D. A. , & Sharma, R. (2017). Acute cardiac functional and mechanical responses to isometric exercise in prehypertensive males. Physiological Reports, 5(7), 10.14814/phy2.13236
    1. Pan, J. , & Tompkins, W. J. (1985). A real‐time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME‐32, 230–236. 10.1109/TBME.1985.325532
    1. Paz, M. A. , de‐La‐Sierra, A. , Sáez, M. , Barceló, M. A. , Rodríguez, J. J. , Castro, S. , Lagarón, C. , Garrido, J. M. , Vera, P. , & Coll‐de‐Tuero, G. (2016). Treatment efficacy of anti‐hypertensive drugs in monotherapy or combination: ATOM systematic review and meta‐analysis of randomized clinical trials according to PRISMA statement. Medicine, 95(30), e4071. 10.1097/MD.0000000000004071
    1. Prakash, E. S. , Sethuraman, K. R. , & Narayan, S. K. (2005). Cardiovascular autonomic regulation in subjects with normal blood pressure, high‐normal blood pressure and recent‐onset hypertension. Clinical and Experimental Pharmacology and Physiology, 32, 488–494. 10.1111/j.1440-1681.2005.04218.x
    1. Ray, C. A. , & Carrasco, D. I. (2000). Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity. Available at: (Accessed: 23 April 2021).
    1. Shaffer, F. , & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. 10.3389/fpubh.2017.00258
    1. Taylor, K. A. , Wiles, J. D. , Coleman, D. A. , Leeson, P. , Sharma, R. , & O’Driscoll, J. M. (2019). Neurohumoral and ambulatory haemodynamic adaptations following isometric exercise training in unmedicated hypertensive patients. Journal of Hypertension, 37(4), 827–836. 10.1097/HJH.0000000000001922
    1. Taylor, K. A. , Wiles, J. D. , Coleman, D. D. , Sharma, R. , & O'driscoll, J. M. (2017). Continuous cardiac autonomic and hemodynamic responses to isometric exercise. Medicine and Science in Sports and Exercise, 49(8), 1511–1519. 10.1249/MSS.0000000000001271
    1. Whelton, P. K. , Carey, R. M. , Aronow, W. S. , Casey, D. E. Jr , Collins, K. J. , Dennison Himmelfarb, C. , DePalma, S. M. , Gidding, S. , Jamerson, K. A. , Jones, D. W. , MacLaughlin, E. J. , Muntner, P. , Ovbiagele, B. , Smith, S. C. Jr , Spencer, C. C. , Stafford, R. S. , Taler, S. J. , Thomas R. J., Williams, K. A. Sr , … Wright, J. T. Jr (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary. Journal of the American Society of Hypertension, 12, (8), 579.e1. –579.e73. 10.1016/j.jash.2018.06.010
    1. Wiles, J. D. , Allum, S. R. , Coleman, D. A. , & Swaine, I. L. (2008). The relationships between exercise intensity, heart rate, and blood pressure during an incremental isometric exercise test. Journal of Sports Sciences, 26(2), 155–162. 10.1080/02640410701370655
    1. Wiles, J. D. , Coleman, D. A. , & Swaine, I. L. (2010). The effects of performing isometric training at two exercise intensities in healthy young males. European Journal of Applied Physiology, 108(3), 419–428. 10.1007/s00421-009-1025-6
    1. Wiles, J. D. , Goldring, N. , & Coleman, D. (2017). Home‐based isometric exercise training induced reductions resting blood pressure. European Journal of Applied Physiology, 117(1), 83–93. 10.1007/s00421-016-3501-0
    1. Wiles, J. D. , Taylor, K. , Coleman, D. , Sharma, R. , & O'Driscoll, J. (2018). The safety of isometric exercise: Rethinking the exercise prescription paradigm for those with stage 1 hypertension. Medicine, 97(10), e0105. 10.1097/MD.0000000000010105
    1. Wilhelm, M. , Winkler, A. , Rief, W. , & Doering, B. K. (2016). Effect of placebo groups on blood pressure in hypertension: A meta‐analysis of beta‐blocker trials. Journal of the American Society of Hypertension, 10(12), 917–929. 10.1016/j.jash.2016.10.009
    1. Williams, B. , Mancia, G. , Spiering, W. , Rosei, E. A. , Azizi, M. , Burnier, M. , Clement, D. L. , Coca, A. , de Simone, G. , Dominiczak, A. , Kahan, T. , Mahfoud, F. , Redon, J. , Ruilope, L. , Zanchetti, A. , Kerins, M. , Kjeldsen, S. E. , Kreutz, R. , Laurent, S. , … ESC Scientific Document Group . (2018). ESC/ESH guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). European Heart Journal, 39(33), 3021–3104. 10.1093/eurheartj/ehy339
    1. World Health Organization . (2010) Global recommendations on physical activity for health. World Health Organization. World Health Organization. Available at: (Accessed: 3 April 2020).
    1. Zhou, B. , Bentham, J. , Di Cesare, M. , Bixby, H. , Danaei, G. , Cowan, M. J. , Paciorek, C. J. , Singh, G. , Hajifathalian, K. , Bennett, J. E. , Taddei, C. , Bilano, V. , Carrillo‐Larco, R. M. , Djalalinia, S. , Khatibzadeh, S. , Lugero, C. , Peykari, N. , Zhang, W. Z. , Lu, Y. , … Zuñiga Cisneros, J. (2017). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population‐based measurement studies with 19·1 million participants. The Lancet, 389(10064), 37–55. 10.1016/S0140-6736(16)31919-5

Source: PubMed

3
Předplatit