Rintatolimod (Ampligen®) Enhances Numbers of Peripheral B Cells and Is Associated with Longer Survival in Patients with Locally Advanced and Metastasized Pancreatic Cancer Pre-Treated with FOLFIRINOX: A Single-Center Named Patient Program

Hassana El Haddaoui, Rianne Brood, Diba Latifi, Astrid A Oostvogels, Yarne Klaver, Miranda Moskie, Dana A Mustafa, Reno Debets, Casper H J van Eijck, Hassana El Haddaoui, Rianne Brood, Diba Latifi, Astrid A Oostvogels, Yarne Klaver, Miranda Moskie, Dana A Mustafa, Reno Debets, Casper H J van Eijck

Abstract

Background: Treatment with the TLR-3 agonist rintatolimod may improve pancreatic cancer patients’ survival via immunomodulation, but the effect is unproven. Methods: In this single-center named patient program, patients with locally advanced pancreatic cancer (LAPC) or metastatic disease were treated with rintatolimod (six weeks total, twice per week, with a maximum of 400 mg per infusion). The primary endpoints were the systemic immune-inflammation index (SIII), the neutrophil to lymphocyte ratio (NLR), and the absolute counts of 18 different populations of circulating immune cells as measured by flow cytometry. Secondary endpoints were progression-free survival (PFS) and overall survival (OS). Subgroup analyses were performed in long-term survivors (>1-year overall survival after starting rintatolimod) and compared to short-term survivors (≤1 year). Results: Between January 2017 and February 2019, twenty-seven patients with stable LAPC or metastatic disease were pre-treated with FOLFIRINOX and treated with rintatolimod. Rintatolimod treatment was well-tolerated. The SIII and NLR values were significantly lower in the 11 long-term survivors, versus 16 short-term survivors. The numbers of B-cells were significantly increased in long-term survivors. Numbers of T cells and myeloid cells were not significantly increased after treatment with rintatolimod. Median PFS was 13 months with rintatolimod, versus 8.6 months in a subset of matched controls (n = 27, hazard ratio = 0.52, 95% CI = 0.28−0.90, p = 0.007). The median OS was 19 months with rintatolimod, versus 12.5 months in the matched control (hazard ratio = 0.51, 95% CI = 0.28−0.90, p = 0.016). Conclusions: Treatment with rintatolimod showed a favorable effect on the numbers of peripheral B cells in patients with pancreatic cancer and improved survival in pancreatic cancer, but additional evidence is required.

Keywords: immunotherapy; maintenance therapy; pancreatic cancer; rintatolimod; toll-like receptor 3.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Profile of the single-center name patient program.
Figure 2
Figure 2
(A) Systemic immune inflammation index (SIII) in short-term survivors (n = 9) and long-term survivors (n = 9). *: p = 0.010 (Mann–Whitney U test); **: p = 0.0005 (Mann–Whitney U test_. (B) Neutrophil to lymphocyte ratio (NLR) in short-term survivors and long term-survivors. *: p = 0.006 (Mann–Whitney U test); **: p = 0.014 (Mann–Whitney U test).
Figure 3
Figure 3
Systemic immune cells in short-term survivors (n = 9) versus long-term survivors (n = 9). All p-values ≥ 0.05 using a paired sample t-test.
Figure 4
Figure 4
(A) B cells in circulating blood of all patients treated with rintatolimod (n = 18, *: p = 0.001 from paired sample t-test). (B) B cells in circulating blood of short-term survivors (n = 9) and long-term survivors (n = 9 *: p = 0.002 from paired sample t-test).
Figure 5
Figure 5
(A) Kaplan–Meier estimates for progression-free survival and overall survival of patients with locally advanced and metastatic pancreatic cancer treated with rintatolimod (n = 27) compared to matched controls (n = 54). (B) Kaplan–Meier estimates for progression-free survival and overall survival of patients with locally advanced and metastatic pancreatic cancer treated with rintatolimod (n = 27) compared to subset of matched controls (n = 27). p-values are from the Cox proportional hazards model.
Figure 5
Figure 5
(A) Kaplan–Meier estimates for progression-free survival and overall survival of patients with locally advanced and metastatic pancreatic cancer treated with rintatolimod (n = 27) compared to matched controls (n = 54). (B) Kaplan–Meier estimates for progression-free survival and overall survival of patients with locally advanced and metastatic pancreatic cancer treated with rintatolimod (n = 27) compared to subset of matched controls (n = 27). p-values are from the Cox proportional hazards model.

References

    1. Suker M., Beumer B.R., Sadot E., Marthey L., Faris J.E., Mellon E.A., El-Rayes B.F., Wang-Gillam A., Lacy J., Hosein P.J., et al. FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 2016;17:801–810. doi: 10.1016/S1470-2045(16)00172-8.
    1. Rombouts S.J., Walma M.S., Vogel J.A., van Rijssen L.B., Wilmink J.W., Mohammad N.H., van Santvoort H.C., Molenaar I.Q., Besselink M.G. Systematic Review of Resection Rates and Clinical Outcomes After FOLFIRINOX-Based Treatment in Patients with Locally Advanced Pancreatic Cancer. Ann. Surg. Oncol. 2016;23:4352–4360. doi: 10.1245/s10434-016-5373-2.
    1. Zhang B., Zhou F., Hong J., Ng D.M., Yang T., Zhou X., Jin J., Zhou F., Chen P., Xu Y. The role of FOLFIRINOX in metastatic pancreatic cancer: A meta-analysis. World J. Surg. Oncol. 2021;19:182. doi: 10.1186/s12957-021-02291-6.
    1. Mizrahi J.D., Surana R., Valle J.W., Shroff R.T. Pancreatic cancer. Lancet. 2020;395:2008–2020. doi: 10.1016/S0140-6736(20)30974-0.
    1. Conroy T., Desseigne F., Ychou M., Bouché O., Guimbaud R., Bécouarn Y., Adenis A., Raoul J.L., Gourgou-Bourgade S., de la Fouchardière C., et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011;364:1817–1825. doi: 10.1056/NEJMoa1011923.
    1. Ho W.J., Jaffee E.M., Zheng L. The tumour microenvironment in pancreatic cancer—Clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 2020;17:527–540. doi: 10.1038/s41571-020-0363-5.
    1. Neoptolemos J.P., Kleeff J., Michl P., Costello E., Greenhalf W., Palmer D.H. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 2018;15:333–348. doi: 10.1038/s41575-018-0005-x.
    1. Hosein A.N., Brekken R.A., Maitra A. Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 2020;17:487–505. doi: 10.1038/s41575-020-0300-1.
    1. Huber M., Brehm C.U., Gress T.M., Buchholz M., Alashkar Alhamwe B., von Strandmann E.P., Slater E.P., Bartsch J.W., Bauer C., Lauth M. The Immune Microenvironment in Pancreatic Cancer. Int. J. Mol. Sci. 2020;21:7307. doi: 10.3390/ijms21197307.
    1. Steele N.G., Carpenter E.S., Kemp S.B., Sirihorachai V., The S., Delrosario L., Lazarus J., Amir E.D., Gunchick V., Espinoza C., et al. Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer. Nat. Cancer. 2020;1:1097–1112. doi: 10.1038/s43018-020-00121-4.
    1. Leulier F., Lemaitre B. Toll-like receptors--taking an evolutionary approach. Nat. Rev. Genet. 2008;9:165–178. doi: 10.1038/nrg2303.
    1. Brennan J.J., Gilmore T.D. Evolutionary Origins of Toll-like Receptor Signaling. Mol. Biol. Evol. 2018;35:1576–1587. doi: 10.1093/molbev/msy050.
    1. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front. Immunol. 2014;5:461. doi: 10.3389/fimmu.2014.00461.
    1. Wen L., Peng J., Li Z., Wong F.S. The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J. Immunol. 2004;172:3173–3180. doi: 10.4049/jimmunol.172.5.3173.
    1. Kawai T., Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 2009;21:317–337. doi: 10.1093/intimm/dxp017.
    1. Nicodemus C.F., Wang L., Lucas J., Varghese B., Berek J.S. Toll-like receptor-3 as a target to enhance bioactivity of cancer immunotherapy. Am. J. Obstet. Gynecol. 2010;202:608.e1–608.e8. doi: 10.1016/j.ajog.2009.12.001.
    1. Jasani B., Navabi H., Adams M. Ampligen: A potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine. 2009;27:3401–3404. doi: 10.1016/j.vaccine.2009.01.071.
    1. Fujisawa M., Kanda T., Shibata T., Sasaki R., Masuzaki R., Matsumoto N., Nirei K., Imazu H., Kuroda K., Sugitani M., et al. Involvement of the Interferon Signaling Pathways in Pancreatic Cancer Cells. Anticancer Res. 2020;40:4445–4455. doi: 10.21873/anticanres.14449.
    1. Booy S., Hofland L., van Eijck C. Potentials of interferon therapy in the treatment of pancreatic cancer. J. Interferon. Cytokine Res. 2015;35:327–339. doi: 10.1089/jir.2014.0157.
    1. Cheng Y.S., Xu F. Anticancer function of polyinosinic-polycytidylic acid. Cancer Biol. Ther. 2010;10:1219–1223. doi: 10.4161/cbt.10.12.13450.
    1. Salaun B., Lebecque S., Matikainen S., Rimoldi D., Romero P. Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Pt 1Clin. Cancer Res. 2007;13:4565–4574. doi: 10.1158/1078-0432.CCR-07-0274.
    1. Bianchi F., Pretto S., Tagliabue E., Balsari A., Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol. Ther. 2017;18:747–756. doi: 10.1080/15384047.2017.1373220.
    1. Strayer D.R., Carter W., Strauss K.I., Brodsky I., Suhadolnik R., Ablashi D., Henry B., Mitchell W.M., Bastien S., Peterson D. Long Term Improvements in Patients with Chronic Fatigue Syndrome Treated with Ampligen. J. Chronic Fatigue Syndr. 1995;1:35–53. doi: 10.1300/J092v01n01_04.
    1. Strayer D.R., Carter W.A., Brodsky I., Cheney P., Peterson D., Salvato P., Thompson C., Loveless M., Shapiro D.E., Elsasser W. A controlled clinical trial with a specifically configured RNA drug, poly(I).poly(C12U), in chronic fatigue syndrome. Clin. Infect. Dis. 1994;18((Suppl. S1)):S88–S95. doi: 10.1093/clinids/18.Supplement_1.S88.
    1. Strayer D.R., Carter W.A., Stouch B.C., Stevens S.R., Bateman L., Cimoch P.J., Lapp C.W., Peterson D.L. A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS ONE. 2012;7:e31334. doi: 10.1371/journal.pone.0031334.
    1. Ramanathan R., Choudry H., Jones H., Girgis M., Gooding W., Kalinski P., Bartlett D. Phase II Trial of Adjuvant Dendritic Cell Vaccine in Combination with Celecoxib, Interferon-α, and Rintatolimod in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Metastases. Ann. Surg. Oncol. 2021;28:4637–4646. doi: 10.1245/s10434-020-09464-9.
    1. 15 Studies Found for: Rintatolimod | Cancer: U.S. National Library of Medicine 2022 [Updated 2022] [(accessed on 12 January 2021)]; Available online:
    1. Aziz M.H., Sideras K., Aziz N.A., Mauff K., Haen R., Roos D., Saida L., Suker M., van der Harst E., Mieog J.S., et al. The Systemic-immune-inflammation Index Independently Predicts Survival and Recurrence in Resectable Pancreatic Cancer and its Prognostic Value Depends on Bilirubin Levels: A Retrospective Multicenter Cohort Study. Ann. Surg. 2019;270:139–146. doi: 10.1097/SLA.0000000000002660.
    1. Allen J., Cernik C., Bajwa S., Al-Rajabi R., Saeed A., Baranda J., Williamson S., Sun W., Kasi A. Association of Neutrophil, Platelet, and Lymphocyte Ratios with the Prognosis in Unresectable and Metastatic Pancreatic Cancer. J. Clin. Med. 2020;9:3283. doi: 10.3390/jcm9103283.
    1. National Cancer Institute Cancer Therapy Evaluation Program (CTEP): CTEP. [(accessed on 12 January 2021)]; Updated 2022. Available online: .
    1. Kunert A., Basak E.A., Hurkmans D.P., Balcioglu H.E., Klaver Y., van Brakel M., Oostvogels A.A.M., Lamers C.H.J., Bins S., Koolen S.L.W., et al. CD45RA(+)CCR7(-) CD8 T cells lacking co-stimulatory receptors demonstrate enhanced frequency in peripheral blood of NSCLC patients responding to nivolumab. J. Immunother. Cancer. 2019;7:149. doi: 10.1186/s40425-019-0608-y.
    1. Tsou P., Katayama H., Ostrin E.J., Hanash S.M. The Emerging Role of B Cells in Tumor Immunity. Cancer Res. 2016;76:5597–5601. doi: 10.1158/0008-5472.CAN-16-0431.
    1. Hua Z., Hou B. TLR signaling in B-cell development and activation. Cell. Mol. Immunol. 2013;10:103–106. doi: 10.1038/cmi.2012.61.
    1. Ligeiro D., Rao M., Maia A., Castillo M., Beltran A., Maeurer M. B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer: Opportunities for Precision Medicine? Adv. Exp. Med. Biol. 2020;1273:175–195.
    1. Burger J.A., Wiestner A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat. Rev. Cancer. 2018;18:148–167. doi: 10.1038/nrc.2017.121.
    1. Castino G.F., Cortese N., Capretti G., Serio S., Di Caro G., Mineri R., Magrini E., Grizzi F., Cappello P., Novelli F., et al. Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology. 2016;5:e1085147. doi: 10.1080/2162402X.2015.1085147.
    1. Brunner M., Maier K., Rümmele P., Jacobsen A., Merkel S., Benard A., Krautz C., Kersting S., Grützmann R., Weber G.F. Upregulation of CD20 Positive B-Cells and B-Cell Aggregates in the Tumor Infiltration Zone is Associated with Better Survival of Patients with Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2020;21:1779. doi: 10.3390/ijms21051779.
    1. Navabi H., Jasani B., Reece A., Clayton A., Tabi Z., Donninger C., Mason M., Adams M. A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine. 2009;27:107–115. doi: 10.1016/j.vaccine.2008.10.024.
    1. Yamamoto T., Yanagimoto H., Satoi S., Toyokawa H., Yamao J., Kim S., Terakawa N., Takahashi K., Kwon A.H. Circulating myeloid dendritic cells as prognostic factors in patients with pancreatic cancer who have undergone surgical resection. J. Surg. Res. 2012;173:299–308. doi: 10.1016/j.jss.2010.09.027.
    1. Shojaei H., Oberg H.H., Juricke M., Marischen L., Kunz M., Mundhenke C., Gieseler F., Kabelitz D., Wesch D. Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res. 2009;69:8710–8717. doi: 10.1158/0008-5472.CAN-09-1602.
    1. Verma R., Foster R.E., Horgan K., Mounsey K., Nixon H., Smalle N., Hughes T.A., Carter C.R. Lymphocyte depletion and repopulation after chemotherapy for primary breast cancer. Breast Cancer Res. 2016;18:10. doi: 10.1186/s13058-015-0669-x.
    1. Mozaffari F., Lindemalm C., Choudhury A., Granstam-Björneklett H., Lekander M., Nilsson B., Ojutkangas M.L., Osterborg A., Bergkvist L., Mellstedt H. Systemic immune effects of adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide and/or radiotherapy in breast cancer: A longitudinal study. Cancer Immunol. Immunother. 2009;58:111–120. doi: 10.1007/s00262-008-0530-5.

Source: PubMed

3
Předplatit