Noninvasive Imaging Estimation of Myocardial Iron Repletion Following Administration of Intravenous Iron: The Myocardial-IRON Trial

Julio Núñez, Gema Miñana, Ingrid Cardells, Patricia Palau, Pau Llàcer, Lorenzo Fácila, Luis Almenar, Maria P López-Lereu, Jose V Monmeneu, Martina Amiguet, Jessika González, Alicia Serrano, Vicente Montagud, Raquel López-Vilella, Ernesto Valero, Sergio García-Blas, Vicent Bodí, Rafael de la Espriella-Juan, Josep Lupón, Jorge Navarro, José Luis Górriz, Juan Sanchis, Francisco J Chorro, Josep Comín-Colet, Antoni Bayés-Genís, Myocardial‐IRON Investigators* †, Meritxell Soler, Amparo Villaescusa, Jose Civera, Anna Mollar, Maria Del Carmen Moreno, Veronica Vidal, Julio Núñez, Gema Miñana, Ingrid Cardells, Patricia Palau, Pau Llàcer, Lorenzo Fácila, Luis Almenar, Maria P López-Lereu, Jose V Monmeneu, Martina Amiguet, Jessika González, Alicia Serrano, Vicente Montagud, Raquel López-Vilella, Ernesto Valero, Sergio García-Blas, Vicent Bodí, Rafael de la Espriella-Juan, Josep Lupón, Jorge Navarro, José Luis Górriz, Juan Sanchis, Francisco J Chorro, Josep Comín-Colet, Antoni Bayés-Genís, Myocardial‐IRON Investigators* †, Meritxell Soler, Amparo Villaescusa, Jose Civera, Anna Mollar, Maria Del Carmen Moreno, Veronica Vidal

Abstract

Background Intravenous ferric carboxymaltose (FCM) improves symptoms, functional capacity, and quality of life in heart failure and iron deficiency. The mechanisms underlying these effects are not fully understood. The aim of this study was to examine changes in myocardial iron content after FCM administration in patients with heart failure and iron deficiency using cardiac magnetic resonance. Methods and Results Fifty-three stable heart failure and iron deficiency patients were randomly assigned 1:1 to receive intravenous FCM or placebo in a multicenter, double-blind study. T2* and T1 mapping cardiac magnetic resonance sequences, noninvasive surrogates of intramyocardial iron, were evaluated before and 7 and 30 days after randomization using linear mixed regression analysis. Results are presented as least-square means with 95% CI. The primary end point was the change in T2* and T1 mapping at 7 and 30 days. Median age was 73 (65-78) years, with N-terminal pro-B-type natriuretic peptide, ferritin, and transferrin saturation medians of 1690 pg/mL (1010-2828), 63 ng/mL (22-114), and 15.7% (11.0-19.2), respectively. Baseline T2* and T1 mapping values did not significantly differ across treatment arms. On day 7, both T2* and T1 mapping (ms) were significantly lower in the FCM arm (36.6 [34.6-38.7] versus 40 [38-42.1], P=0.025; 1061 [1051-1072] versus 1085 [1074-1095], P=0.001, respectively). A similar reduction was found at 30 days for T2* (36.3 [34.1-38.5] versus 41.1 [38.9-43.4], P=0.003), but not for T1 mapping (1075 [1065-1085] versus 1079 [1069-1089], P=0.577). Conclusions In patients with heart failure and iron deficiency, FCM administration was associated with changes in the T2* and T1 mapping cardiac magnetic resonance sequences, indicative of myocardial iron repletion. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03398681.

Keywords: cardiac magnetic resonance; ferric carboxymaltose; heart failure; iron deficiency; myocardial iron.

Figures

Figure 1
Figure 1
Flow chart. FCM indicates ferric carboxymaltose; NT‐proBNP, N‐terminal pro‐B‐type natriuretic peptide.
Figure 2
Figure 2
T2* and T1 mapping after administration of FCM. A, Seven‐day comparison of LSM (95% CIs) between FCM and placebo. B, Thirty‐day comparison of LSM (95% CIs) between FCM and placebo. FCM indicates ferric carboxymaltose; LSM, least‐square means from a linear mixed regression analysis.
Figure 3
Figure 3
Association of posttreatment changes in myocardial iron content (T2* and T1 mapping) with concomitant changes in systemic iron status in the active arm. A, Changes in CMR sequences and changes in ferritin; B, A, Changes in CMR sequences and changes in TSAT. Values are the least‐square means (95% CIs) from each linear regression analysis (OLS). TSAT indicates transferrin saturation.
Figure 4
Figure 4
Association of posttreatment changes in myocardial iron content (T2* and T1 mapping) with concomitant changes in surrogate markers of disease severity in the active‐arm. A, Changes in CMR sequences and changes in LVEF; B, Changes in CMR sequences and changes in KCCQ; C, Changes in CMR sequences and changes in 6MWT; D, Changes in CMR sequences and changes in NYHA class; E, Changes in CMR sequences and changes in NT‐proBNP. Values are the least‐square means (95% CIs) from each linear regression analysis (OLS). 6MWT indicates distance walked in 6 minutes; CMR, cardiac magnetic resonance; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT‐proBNP, N‐terminal pro‐B‐type natriuretic peptide; NYHA, New York Heart Association.

References

    1. Rocha BML, Cunha GJL, Menezes Falcão LF. The burden of iron deficiency in heart failure: therapeutic approach. J Am Coll Cardiol. 2018;71:782–793.
    1. Comín‐Colet J, Enjuanes C, González G, Torrens A, Cladellas M, Meroño O, Ribas N, Ruiz S, Gómez M, Verdú JM, Bruguera J. Iron deficiency is a key determinant of health‐related quality of life in patients with chronic heart failure regardless of anaemia status. Eur J Heart Fail. 2013;15:1164–1172.
    1. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin‐Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJ, Anker SD, Ponikowski P. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31:1872–1880.
    1. Núñez J, Comín‐Colet J, Miñana G, Núñez E, Santas E, Mollar A, Valero E, García‐Blas S, Cardells I, Bodí V, Chorro FJ, Sanchis J. Iron deficiency and risk of early readmission following a hospitalization for acute heart failure. Eur J Heart Fail. 2016;18:798–802.
    1. von Haehling S, Ebner N, Evertz R, Ponikowski P, Anker SD. Iron deficiency in heart failure: an overview. JACC Heart Fail. 2019;7:36–46.
    1. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Lüscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, von Eisenhart Rothe B, Pocock SJ, Poole‐Wilson PA, Ponikowski P; FAIR‐HF Trial Investigators . Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–2448.
    1. Ponikowski P, van Veldhuisen DJ, Comin‐Colet J, Ertl G, Komajda M, Mareev V, McDonagh T, Parkhomenko A, Tavazzi L, Levesque V, Mori C, Roubert B, Filippatos G, Ruschitzka F, Anker SD; CONFIRM‐HF Investigators . Beneficial effects of long‐term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2015;36:657–668.
    1. van Veldhuisen DJ, Ponikowski P, van der Meer P, Metra M, Böhm M, Doletsky A, Voors AA, Macdougall IC, Anker SD, Roubert B, Zakin L, Cohen‐Solal A; EFFECT‐HF Investigators . Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation. 2017;136:1374–1383.
    1. Dong F, Zhang X, Culver B, Chew HG Jr, Kelley RO, Ren J. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration. Clin Sci (Lond). 2005;109:277–286.
    1. Kobak KA, Radwańska M, Dzięgała M, Kasztura M, Josiak K, Banasiak W, Ponikowski P, Jankowska EA. Structural and functional abnormalities in iron‐depleted heart. Heart Fail Rev. 2019;24:269–277.
    1. Haddad S, Wang Y, Galy B, Korf‐Klingebiel M, Hirsch V, Baru AM, Rostami F, Reboll MR, Heineke J, Flögel U, Groos S, Renner A, Toischer K, Zimmermann F, Engeli S, Jordan J, Bauersachs J, Hentze MW, Wollert KC, Kempf T. Iron‐regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J. 2017;38:362–372.
    1. Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail. 2018;20:910–919.
    1. Maeder MT, Khammy O, dos Remedios C, Kaye DM. Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J Am Coll Cardiol. 2011;58:474–480.
    1. Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, Pluhacek T, Spatenka J, Kovalcikova J, Drahota Z, Kautzner J, Pirk J, Houstek J. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail. 2017;19:522–530.
    1. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, Firmin DN, Wonke B, Porter J, Walker JM, Pennell DJ. Cardiovascular T2‐star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22:2171–2179.
    1. He T. Cardiovascular magnetic resonance T2* for tissue iron assessment in the heart. Quant Imaging Med Surg. 2014;4:407–412.
    1. Nagao M, Matsuo Y, Kamitani T, Yonezawa M, Yamasaki Y, Kawanami S, Abe K, Mukai Y, Higo T, Yabuuchi H, Takemura A, Yoshiura T, Sunagawa K, Honda H. Quantification of myocardial iron deficiency in nonischemic heart failure by cardiac T2* magnetic resonance imaging. Am J Cardiol. 2014;113:1024–1030.
    1. Taylor AJ, Salerno M, Dharmakumar R, Jerosch‐Herold M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016;9:67–81.
    1. Núñez J, Monmeneu JV, Mollar A, Núñez E, Bodí V, Miñana G, García‐Blas S, Santas E, Agüero J, Chorro FJ, Sanchis J, López‐Lereu MP. Left ventricular ejection fraction recovery in patients with heart failure treated with intravenous iron: a pilot study. ESC Heart Fail. 2016;3:293–298.
    1. Miñana G, Cardells I, Palau P, Llàcer P, Fácila L, Almenar L, López‐Lereu MP, Monmeneu JV, Amiguet M, González J, Serrano A, Montagud V, López‐Vilella R, Valero E, García‐Blas S, Bodí V, de la Espriella‐Juan R, Sanchis J, Chorro FJ, Bayés‐Genís A, Núñez J; Myocardial‐IRON Investigators . Changes in myocardial iron content following administration of intravenous iron (Myocardial‐IRON): study design. Clin Cardiol. 2018;41:729–735.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González‐Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P; Authors/Task Force Members; Document Reviewers . 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.
    1. Carpenter JR, Kenward MG. Multiple Imputation and Its Application. Chichester, UK: Wiley; 2013. ISBN: 978‐0‐470‐74052‐1.
    1. Cohen‐Solal A, Leclercq C, Deray G, Lasocki S, Zambrowski JJ, Mebazaa A, de Groote P, Damy T, Galinier M. Iron deficiency: an emerging therapeutic target in heart failure. Heart. 2014;100:1414–1420.
    1. Filippatos G, Farmakis D, Colet JC, Dickstein K, Lüscher TF, Willenheimer R, Parissis J, Gaudesius G, Mori C, von Eisenhart Rothe B, Greenlaw N, Ford I, Ponikowski P, Anker SD. Intravenous ferric carboxymaltose in iron‐deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR‐HF trial. Eur J Heart Fail. 2013;15:1267–1276.
    1. Toblli JE, Di Gennaro F, Rivas C. Changes in echocardiographic parameters in iron deficiency patients with heart failure and chronic kidney disease treated with intravenous iron. Heart Lung Circ. 2015;24:686–695.
    1. Toblli JE, Lombraña A, Duarte P, Di Gennaro F. Intravenous iron reduces NT‐pro‐brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J Am Coll Cardiol. 2007;50:1657–1665.
    1. Usmanov RI, Zueva EB, Silverberg DS, Shaked M. Intravenous iron without erythropoietin for the treatment of iron deficiency anemia in patients with moderate to severe congestive heart failure and chronic kidney insufficiency. J Nephrol. 2008;21:236–242.
    1. Pennell DJ. Cardiovascular magnetic resonance. Circulation. 2010;121:692–705.
    1. Carpenter JP, Pennell DJ. Role of T2* magnetic resonance in monitoring iron chelation therapy. Acta Haematol. 2009;122:146–154.
    1. Leszek P, Sochanowicz B, Szperl M, Kolsut P, Brzóska K, Piotrowski W, Rywik TM, Danko B, Polkowska‐Motrenko H, Różański JM, Kruszewski M. Myocardial iron homeostasis in advanced chronic heart failure patients. Int J Cardiol. 2012;159:47–52.

Source: PubMed

3
Předplatit