Past, Present and Future of Surgical Meshes: A Review

Karen Baylón, Perla Rodríguez-Camarillo, Alex Elías-Zúñiga, Jose Antonio Díaz-Elizondo, Robert Gilkerson, Karen Lozano, Karen Baylón, Perla Rodríguez-Camarillo, Alex Elías-Zúñiga, Jose Antonio Díaz-Elizondo, Robert Gilkerson, Karen Lozano

Abstract

Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods.

Keywords: abdominal wall reconstruction; biocompatibility; hernia repair; surgical mesh.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic of: (a) woven; and (b) warp knitted structures.

References

    1. Williams L.S., Hopper P.D. Understanding Medical-Surgical Nursing. 5th ed. F.A. Davis; Philadelphia, PA, USA: 2015. p. 770.
    1. Dabbas N., Adams K., Pearson K., Royle G.T. Frequency of abdominal wall hernias: Is classical teaching out of date? J. R Soc. Med. Short Rep. 2011;2:1–6. doi: 10.1258/shorts.2010.010071.
    1. Bendavid R., Abrahamson J., Arregui M.E., Flament J.B., Phillips E.H. Abdominal Wall Hernias: Principles and Management. 1st ed. Springer; New York, NY, USA: 2001.
    1. Heniford B.T. Hernia Handbook. 1st ed. Carolinas HealthCare System; Charlotte, NC, USA: 2015.
    1. Kingsnorth A. Treating inguinal hernias: Open mesh Lichtenstein operation is preferred over laparoscopy. BMJ. 2004;328:59–60. doi: 10.1136/bmj.328.7431.59.
    1. Li X., Kruger J.A., Jor J.W., Wong V., Dietz H.P., Nash M.P., Nielsen P.M. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. J. Mech. Behav. Biomed. Mater. 2014;37:48–55. doi: 10.1016/j.jmbbm.2014.05.005.
    1. CORDIS: Community Research and Development Information Service. [(accessed on 9 June 2017)]; Available online: .
    1. Bard Davol Inc. [(accessed on 9 June 2017)]; Available online: .
    1. Pandit A.S., Henry J.A. Design of surgical meshes—An engineering perspective. Technol. Heal. Care. 2004;12:51–65.
    1. Melero Correas H. Master Thesis. Universitat Politècnica de Catalunya; Barcelona, Spain: Nov, 2008. Caracterización Mecánica de Mallas Quirúrgicas Para la Reparación de Hernias Abdominales.
    1. Zhu L.-M., Schuster P., Klinge U. Mesh implants: An overview of crucial mesh parameters. World J. Gastrointest. Surg. 2015;10:226–236. doi: 10.4240/wjgs.v7.i10.226.
    1. Billroth T. In: The Medical Sciences in the German Universities: A Study in the History of Civilization. Welch W.H., editor. Macmillan; New York, NY, USA: 1924.
    1. Chowbey P. Endoscopic Repair of Abdominal Wall Hernias. 2nd ed. Byword Books; Delhi, India: 2012.
    1. Greenberg J.A., Clark R.M. Advances in suture material for obstetric and gynecologic surgery. Rev. Obstet. Gynecol. 2009;2:146–158. doi: 10.3909/riog0086.
    1. LeBlanc K.A. Laparoscopic Hernia Surgery an Operative Guide. 1st ed. CRC Press; New Orleans, LA, USA: 2003.
    1. Usher F.C., Fries J.G., Ochsner J.L., Tuttle L.L. Marlex mesh, a new plastic mesh for replacing tissue defects. II. A new plastic mesh for replacing tissue defects. AMA Arch. Surg. 1959;78:138–145. doi: 10.1001/archsurg.1959.04320010140023.
    1. Usher F.C., Hill J.R., Ochsner J.L. Hernia repair with Marlex mesh. A comparison of techniques. Surgery. 1959;46:718–728.
    1. Klinge U., Klosterhalfen B., Birkenhauer V., Junge K., Conze J., Schumpelick V.J. Impact of polymer pore size on the interface scar formation in a rat model. Surg. Res. 2002;103:208–214. doi: 10.1006/jsre.2002.6358.
    1. EU Hernia Trialists Collaboration Repair of groin hernia with synthetic mesh: Meta-analysis of randomized. Ann. Surg. 2002;235:322–332. doi: 10.1097/00000658-200203000-00003.
    1. Stowe J.A. Ph.D. Thesis. Clemson University; Clemson, SC, USA: May, 2015. Development and Fabrication of Novel Woven Meshes as Bone Graft Substitutes for Critical Sized Defects.
    1. Hawn M.T., Gray S.H., Snyder C.W., Graham L.A., Finan K.R., Vick C.C. Predictors of mesh explantation after incisional hernia repair. Am. J. Surg. 2011;202:28–33. doi: 10.1016/j.amjsurg.2010.10.011.
    1. Carbajo M.A., Martín del Olmo J.C., Blanco J.I., De la Cuesta C., Toledano M., Martín F., Vaquero C., Inglada L. Laparoscopic treatment vs open surgery in the solution of major incisional and abdominal wall hernias with mesh. Surg. Endosc. 1999;13:250–252. doi: 10.1007/s004649900956.
    1. Schumpelick V., Fitzgibbons R.J. Hernia Repair Sequelae. 1st ed. Springer; Berlin/Heidelberg, Germany: 2010.
    1. Bendavid R. Prostheses and Abdominal Wall Hernias. 1st ed. R.G. Landes Co.; Austin, TX, USA: 1994.
    1. Zogbi L. The Use of Biomaterials to Treat Abdominal Hernias. In: Pignatello R., editor. Biomaterials Applications for Nanomedicine. 1st ed. Volume 18. InTech; Rijeka, Croatia: 2008. pp. 359–382.
    1. Anderson J.M. Biological Response to Materials. Annu. Rev. Mater. Res. 2001;31:81–110. doi: 10.1146/annurev.matsci.31.1.81.
    1. Batchelor A.W., Chandrasekaran M. Service Characteristics of Biomedical Materials and Implants. 1st ed. Imperial College Press; London, UK: 2004.
    1. Santambrogio L. Biomaterials in Regenerative Medicine and the Immune System. 1st ed. Springer Internatinal Publishing Switzeerland; Cham, Switzerland: 2015.
    1. Acevedo A. Mallas sintéticas Irreabsorbibles su desarrollo en la cirugía de las hernias abdominals. Revista Chilena Cirugía. 2008;60:457–464. doi: 10.4067/S0718-40262008000500017.
    1. Tang L., Ugarova T.P., Plow E.F., Eaton J.W. Molecular determinates of acute inflammatory response to biomaterials. J. Clin. Invest. 1996;97:1329–13234. doi: 10.1172/JCI118549.
    1. Busuttil S.J., Ploplis V.A., Castellino F.J., Tang L., Eaton J.W., Plow E.F. A central role for plasminogen in the inflammatory response to biomaterials. J. Thromb. Haemost. 2004;2:1798–1805. doi: 10.1111/j.1538-7836.2004.00916.x.
    1. Earle D.B., Mark L.A. Prosthetic Material in Inguinal Hernia Repair: How Do I Choose? Surg. Clin. North Am. 2008;88:179–201. doi: 10.1016/j.suc.2007.11.002.
    1. Schaechter M. Encyclopedia of Microbiology. 3rd ed. Academic Press; Cambridge, MA, USA: 2009.
    1. Jacob B.P., Ramshaw B. The SAGES Manual of Hernia Repair. 1st ed. Springer; New York, NY, USA: 2013.
    1. Ramshaw B., Bachman S. Surgical materials for ventral hernia repair. Gen. Surg. News. 2007;34:1–15.
    1. Anderson J.M., Rodriguez A., Chang D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004.
    1. Chu C.-C., von Fraunhofer J.A., Greisler H.P. Wound Closure Biomaterials and Devices. 1st ed. CRC Press LLC; Boca Raton, FL, USA: 1997.
    1. Brown C.N., Finch J.G. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 2010;92:272–278. doi: 10.1308/003588410X12664192076296.
    1. Klinge U., Klosterhalfen B., Schumpelick V. Foreign Body Reaction to Meshes of Used for the Repair of Abdominal Wall Hernias. Eur. J. Surg. 1999;165:665–673.
    1. Junge K., Klinge U., Prescher A., Giboni P., Niewiera M., Schumpelick V. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia. 2001;5:113–118. doi: 10.1007/s100290100019.
    1. Pourdeyhimi B.J. Porosity of surgical mesh fabrics: New technology. Biomed. Mater. Res. 1989;23(Suppl. A1):145–152. doi: 10.1002/jbm.820231313.
    1. Bilsel Y., Abci I. The search for ideal hernia repair; mesh materials and types. Int. J. Surg. 2012;10:317–321. doi: 10.1016/j.ijsu.2012.05.002.
    1. Winters J.C., Fitzgerald M.P., Barber M.D. The use of systhetic mesh in female pelvic reconstructive surgery. BJU Int. 2006;98:70–76. doi: 10.1111/j.1464-410X.2006.06309.x.
    1. Halm J.A. Ph.D. Thesis. Erasmus University Rotterdam; Rotterdam, The Netherlands: Oct, 2005. Experimental and Clinical Approaches to Hernia Treatment and Prevention.
    1. Cortes R.A., Miranda E., Lee H., Gertner M.E. Biomaterials and the evolution of hernia repair II: Composite meshes. In: Norton J., Barie P.S., Bollinger R.R., Chang A.E., Lowry S., Mulvihill S.J., Pass H.I., Thompson R.W., editors. Surgery. 2nd ed. Volume 11. Springer; New York, NY, USA: 2008. pp. 2305–2315.
    1. Tamayol A., Akbari M., Annabi N., Paul A., Khademhosseini A., Juncker D. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol. Adv. 2013;31:669–687. doi: 10.1016/j.biotechadv.2012.11.007.
    1. Blair T. Biomedical Textiles for Orthopaedic and Surgical Applications: Fundamentals, Applications and Tissue Engineering. 1st ed. Woodhead Publishing; Cambridge, UK: 2015.
    1. King M.W., Gupta B.S., Guidoin R. Biotextiles as Medical Implants. 1st ed. Woodhead Publishing; Cambridge, UK: 2013.
    1. Listner G. Polypropylene Monofilament Sutures. 3630205 A. U.S. Patent. 1971 Dec 28;
    1. Hutton J.D., Dumican B.L. Braided Polyester Suture and Implantable Medical Device. 6203564 B1. U.S. Patent. 2001 Mar 20;
    1. Gore R.W. Process for Producing Porous Products. 3953566 A. U.S. Patent. 1976 Apr 27;
    1. Pott P.P., Schwarz M.L.R., Gundling R., Nowak K., Hohenberger P., Roessner E.D. Mechanical properties of mesh materials used for hernia repair and soft tissue augmentation. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0046978.
    1. Lennard D.J., Menezes E.V., Lilenfeld R. Pliabilized Polypropylene Surgical Filaments. 4,911,165 A. U.S. Patent. 1990 Mar 27;
    1. Laurencin C.T., Nair L.S., Bhattacharyya S., Allcock H.R., Bender J.D., Brown P.W., Greish Y.E. Polymeric Nanofibers for Tissue Engineering and Drug Delivery. 7235295 B2. U.S. Patent. 2007 Jun 26;
    1. Zhukovsky V., Rovinskaya L., Vinokurova T., Zhukovskaya I. The Development and Manufacture of Polymeric Endoprosthetic Meshes for the Surgery of Soft Tissues. Autex Res. J. 2002;2:204–209.
    1. Rousseau R.A., Dougherty R. Knitted Surgical Mesh. 6638284 B1. U.S. Patent. 2003 Oct 28;
    1. Schumpelick V., Nyhus L. Meshes: Benefits and Risks. 1st ed. Springer; Berling/Heidelberg, Germany: 2004.
    1. Cobb W.S., Peindl R.M., Zerey M., Carbonell A.M., Heniford B.T. Mesh terminology 101. Hernia. 2009;13:1–6. doi: 10.1007/s10029-008-0428-3.
    1. Klosterhalfen B., Junge K., Klinge U. The lightweight and large porous mesh concept for hernia repair. Expert Rev. Med. Devices. 2005;2:1–15. doi: 10.1586/17434440.2.1.103.
    1. Wang X., Han C., Hu X., Sun H., You C., Gao C., Haiyang Y. Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine. J. Mech. Behav. Biomed. Mater. 2011;4:922–932. doi: 10.1016/j.jmbbm.2011.04.009.
    1. Camp Tibbals E., Jr., Leinsing K.R., DeMarco P.B. Flat-Bed Knitting Machine and Method of Knitting. 6158250 A. U.S. Patent. 2000 Dec 12;
    1. Dougherty R., Vishvaroop A. Surgical Tricot. DE60020350 T2. U.S. Patent. 2006 May 11;
    1. Ting H. Master Thesis. North Caroline State University; Raleigh, NC, USA: Aug, 2011. A Study of Three Dimensional Warp Knits for Novel Applications as Tissue Engineering Scaffolds.
    1. Spencer D.J. Knitting Technology: A Comprehensive Handbook and Practical Guide to Modern Day Principles and Practices. 2nd ed. Pergamon Press; Oxford, UK: 1983.
    1. Deichmann T., Michaelis I., Junge K., Tur M., Michaeli W., Gries T. Textile Composite Materials for Small Intestine Replacement. Autex Res. J. 2009;9:105–108.
    1. Raz S. Warp Knitting Production. 1st ed. Melliand Textilberichte; Heidelberg, Germany: 1987.
    1. Emans P.J., Schreinemacher M.H., Gijbels M.J., Beets G.L., Greve J.W., Koole L.H., Bouvy N.D. Polypropylene Meshes to Prevent Abdominal Herniation: Can Stable Coatings Prevent Adhesions in the Long Term? Ann. Biomed. Eng. 2009;37:410–418. doi: 10.1007/s10439-008-9608-7.
    1. Van’t Riet M., de Vos van Steenwijk P.J., Bonthuis F., Marquet R.L., Steyerberg E.W., Jeekel J., Bonjer H.J. Prevention of Adhesion to Prosthetic Mesh: Comparison of Different Barriers Using an Incisional Hernia Model. Ann. Surg. 2003;237:123–128. doi: 10.1097/00000658-200301000-00017.
    1. Ebersole G.C., Buettmann E.G., MacEwan M.R., Tang M.E., Frisella M.M., Matthews B.D., Deeken C.R. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surg. Endosc. Other Interv. Tech. 2012;26:2717–2728. doi: 10.1007/s00464-012-2258-8.
    1. Xu F., Weng B., Gilkerson R., Materon L.A., Lozano K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr. Polym. 2015;115:16–24. doi: 10.1016/j.carbpol.2014.08.081.
    1. Ciechańska D., Kazimierczak J., Wietecha J., Rom M. Surface Biomodification of Surgical Meshes Intended for Hernia Repair. Fibres Text. East. Eur. 2012;96:107–114.
    1. Karamuk Z.E. Ph.D. Thesis. Swiss Federal Institute of Technology Zurich; Zurich, Switzerland: 2001. Embroidered Textiles for Medical Applications: New Design Criteria with Respect to Structural Biocompatibility.
    1. Norton J.A., Barie P.S., Bollinger R.R., Chang A.E., Lowry S.F., Mulvihill S.J., Pass H.I., Thompson R.W. Surgery. 2nd ed. Springer; New York, NY, USA: 2008.
    1. Yelimlieş B., Alponat A., Cubukçu A., Kuru M., Oz S., Erçin C., Gönüllü N. Carboxymethylcellulose coated on visceral face of polypropylene mesh prevents adhesion without impairing wound healing in incisional hernia model in rats. Hernia. 2003;7:130–133. doi: 10.1007/s10029-003-0125-1.
    1. Franklin M.E., Voeller G., Matthews B.D., Earle D.B. The Benefits of Omega-3 Fatty Acid-Coated Mesh in Ventral Hernia Repair. Spec. Rep. 2010;37:1–8.
    1. Gao Y., Liu L.J., Blatnik J.A., Krpata D.M., Anderson J.M., Criss C.N., Posielski N., Novitsky Y.W. Methodology of fibroblast and mesenchymal stem cell coating of surgical meshes: A pilot analysis. J. Biomed. Mater. Res. B. Appl. Biomater. 2014;10:797–805. doi: 10.1002/jbm.b.33061.
    1. Kidoaki S., Kwon I.K., Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005;26:37–46. doi: 10.1016/j.biomaterials.2004.01.063.
    1. Lamber B., Grossi J.V., Manna B.B., Montes J.H., Bigolin A.V., Cavazzola L.T. May polyester with collagen coating mesh decrease the rate of intraperitoneal adhesions in incisional hernia repair? Arq. Bras. Cir. Dig. 2013;26:13–17. doi: 10.1590/S0102-67202013000100004.
    1. Van’t Riet M., Burger J.W., Bonthuis F., Jeekel J., Bonjer H.J. Prevention of adhesion formation to polypropylene mesh by collagen coating: A randomized controlled study in a rat model of ventral hernia repair. Surg. Endosc. 2004;18:681–685. doi: 10.1007/s00464-003-9054-4.
    1. Niekraszewicz A., Kucharska M., Wawro D., Struszczyk M.H., Kopias K., Rogaczewska A. Development of a Manufacturing Method for Surgical Meshes Modified by Chitosan. Fibres Text. East. Eur. 2007;15:105–109.
    1. Cohen M.S., Stern J.M., Vanni A.J., Kelley R.S., Baumgart E., Field D., Libertino J.A., Summerhayes I.C. In Vitro Analysis of a Nanocrystalline Silver-Coated Surgical Mesh. Surg. Infect. (Larchmt) 2007;8:397–404. doi: 10.1089/sur.2006.032.
    1. Junge K., Rosch R., Klinge U., Saklak M., Klosterhalfen B., Peiper C., Schumpelick V. Titanium coating of a polypropylene mesh for hernia repair: Effect on biocompatibility. Hernia. 2005;9:115–119. doi: 10.1007/s10029-004-0292-8.
    1. Scheidbach H., Tannapfel A., Schmidt U., Lippert H., Köckerling F. Influence of Titanium Coating on the Biocompatibility of a Heavyweight Polypropylene Mesh. Eur. Surg. Res. 2004;36:313–317. doi: 10.1159/000079917.
    1. Niekraszewicz A., Kucharska M., Wawro D., Struszczyk M.H., Rogaczewska A. Partially Resorbable Hernia Meshes. Prog. Chem. Appl. Chitin Its Deriv. 2007;12:109–114.
    1. Niekraszewicz A., Kucharska M., Struszczyk M.H., Rogaczewska A., Struszczyk K. Investigation into Biological, Composite Surgical Meshes. Fibres Text. East. Eur. 2008;16:117–121.
    1. Pascual G., Sotomayor S., Rodríguez M., Bayon Y., Bellón J.M. Behaviour of a New Composite Mesh for the Repair of Full-Thickness Abdominal Wall Defects in a Rabbit Model. PLoS ONE. 2013;8:1–16. doi: 10.1371/journal.pone.0080647.
    1. Plencner M., East B., Tonar Z., Otáhal M., Prosecká E., Rampichová M., Krejčí T., Litvinec A., Buzgo M., Míčková A., Nečas A., et al. Abdominal closure reinforment by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int. J. Nanomedicine. 2014;9:3263–3277. doi: 10.2147/IJN.S63095.
    1. Alves da Silva M.L., Martins A., Costa-Pinto A.R., Costa P., Faria S., Gomes M., Reis R.L., Neves N.M. Cartilage Tissue Engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules. 2010;11:3228–3236. doi: 10.1021/bm100476r.
    1. Popat K. Nanotechnology in Tissue Engineering and Regenerative Medicine. 1st ed. CRC Press; Boca Raton, FL, USA: 2010.
    1. Vasita R., Katti D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomedicine. 2006;1:15–30. doi: 10.2147/nano.2006.1.1.15.
    1. Dorband G.C., Liland A., Menezes E., Steinheuser P., Popadiuk N.M., Failla S.J. Surgical Fastening Device and Method for Manufacture. 4,671,280 A. U.S. Patent. 1987 Jun 9;
    1. Brown P., Stevens K. Nanofibers and Nanotechnology in Textiles. 1st ed. CRC Press; Boca Raton, FL, USA: 2007.
    1. Watanabe K., Kim B.S., Kim I.S. Development of Polypropylene Nanofiber Production System. Polym. Rev. 2011;51:288–308. doi: 10.1080/15583724.2011.594195.
    1. Watanabe K., Nakamura T., Kim B.S., Kim I.S. Effect of organic solvent on morphology and mechanical properties of electrospun syndiotactic polypropylene nanofibers. Polym. Bull. 2011;67:2025–2033. doi: 10.1007/s00289-011-0618-5.
    1. Huang Z.-M., Zhang Y.Z., Kotaki M., Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7.
    1. Padron S., Fuentes A., Caruntu D., Lozano K. Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 2013;113 doi: 10.1063/1.4769886.
    1. Yarlagadda P., Chandrasekharan M., Shyan J.Y. Recent Advances and Current Developments in Tissue Scaffolding. Biomed. Mater. 2005;15:159–177.
    1. Plencner M., Prosecká E., Rampichová M., East B., Buzgo M., Vysloužilová L., Hoch J., Amler E. Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int. J. Nanomedicine. 2015;10:2635–2646. doi: 10.2147/IJN.S77816.
    1. Chakroff J., Kayuha D., Henderson M., Johnson J. Development and Characterization of Novel Electrospun Meshes for Hernia Repair. Int. J. Nanomedicine. 2015;2:1–9. doi: 10.2147/IJN.S77816.
    1. Veleirinho B., Coelho D.S., Dias P.F., Maraschin M., Pinto R., Cargnin-Ferreira E., Peixoto A., Souza J.A., Ribeiro-do-Valle R.M., Lopes-da-Silva J.A. Foreign Body Reaction Associated with PET and PET/Chitosan Electrospun Nanofibrous Abdominal Meshes. PLoS ONE. 2014;9:1–10. doi: 10.1371/journal.pone.0095293.
    1. Zhao W., Ju Y.M., Christ G., Atala A., Yoo J.J., Lee S.J. Diaphragmatic muscle reconstruction with an aligned electrospun poly(ε-caprolactone)/collagen hybrid scaffold. Biomaterials. 2013;34:8235–8240. doi: 10.1016/j.biomaterials.2013.07.057.
    1. Xu F., Weng B., Materon L.A., Gilkerson R., Lozano K. Large-scale production of ternary composite nanofiber membrane for wound dressing applications. J. Bioact. Compat. Polym. Biomed. Appl. 2014;29:646–660. doi: 10.1177/0883911514556959.
    1. Sanbhal N., Miao L., Xu R., Khatri A., Wang L. Physical structure and mechanical properties of knitted hernia mesh materials: A review. J. Ind. Text. 2017 doi: 10.1177/1528083717690613.
    1. Guillaume O., Teuschl A.H., Gruber-Blum S., Fortelny R.H., Redl H., Petter-Puchner A. Emerging trends in abdominal wall reinforcement: Bringing bio-functionality to meshes. Adv. Healthc. Mater. 2015;4:1763–1789. doi: 10.1002/adhm.201500201.
    1. Todros S., Pavan P.G., Natali A.N. Synthetic surgical meshes used in abdominal wall surgery: Part I—Materials and structural conformation. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2017;105:689–699. doi: 10.1002/jbm.b.33586.
    1. Todros S., Pavan P.G., Pachera P., Natali A.N. Synthetic surgical meshes used in abdominal wall surgery: Part II—Biomechanical aspects. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2017;105:892–903. doi: 10.1002/jbm.b.33584.

Source: PubMed

3
Předplatit