Performance of the UroVysion® FISH assay for the diagnosis of malignant effusions using two cutoff strategies

Débora C B Rosolen, Daniel K Faria, Caroline S Faria, Leila Antonangelo, Débora C B Rosolen, Daniel K Faria, Caroline S Faria, Leila Antonangelo

Abstract

The cytological examination of cavity fluids has limited sensitivity in the diagnosis of malignancy. Aneuploidy, which is commonly observed in neoplastic cells, could potentially be used as an ancillary diagnostic tool. To evaluate the detection of aneuploid cells in cavitary effusion samples using the fluorescence in situ hybridization (FISH) assay UroVysion® with some adaptations and two different cutoff strategies. Seventy samples of pleural or peritoneal fluid with positive (n = 40), negative (n = 15), or suspicious (n = 15) oncotic cytology were subjected to FISH assay with the multitarget UroVysion® kit, which is composed of probes that hybridize to the centromeric region of chromosomes 3, 7, and 17 and to the locus 9p21. FISH performance was evaluated using two different cutoffs: (1) the manufacturer's cutoff (M-FISH) and 2) a proposed cutoff (P-FISH). Using M-FISH, the diagnostic sensitivity was 57.1%, specificity 87.5%, and accuracy 60.0%; with P-FISH, the sensitivity was 87.3%, specificity 71.4%, and accuracy 85.7%. When combined with cytology, the sensitivity, specificity, and accuracy were 88.0%, 83.3%, and 87.8%, respectively. Malignant cells presented a predominance of chromosomal gains. The UroVysion® test using the P-FISH cutoff was effective in demonstrating aneuploid cells in all malignant effusions, confirming the diagnosis of malignancy even in cases with suspicious cytology.

Keywords: Aneuploidy; ascites; cytology; fluorescent in situ hybridization; malignancy; pleural effusion.

© 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Cytological characteristics of a malignant and a reactive pleural fluid sample. (A) Tumor cells clustering in case of malignant pleural effusion (Leishman); (B) reactive mesothelial clustering of cells in benign pleural effusion (Leishman).
Figure 2
Figure 2
FISH images showing a euploid cell in a benign peritoneal effusion case (A) and an aneuploid cell in a malignant pleural effusion case (B). A. Pleural effusion cells showing euploid cells (2n) for chromosomes 3 (red), 7 (green), 17 (blue), and 9p21 (yellow); FISH, UroVysion, 1000×; B. pleural effusion cells showing aneuploidy for chromosomes 3 (red), 7 (green), 17 (blue), and 9p21 (yellow); FISH, UroVysion, 1000×.
Figure 3
Figure 3
Summary of the study design.
Figure 4
Figure 4
Tumor primary sites in cases with malignant effusion.
Figure 5
Figure 5
Frequency of cell signals according to probe (median).
Figure 6
Figure 6
Chromosomal abnormalities observed on chromosomes 3, 7, 17, and 9p21.

References

    1. Froudarakis, M. E. 2008. Diagnostic work‐up of pleural effusions. Respiration 75:4–13.
    1. Peter, S. , Eltoum I., and Eloubeidi M. A.. 2017. EUS‐guided FNA of peritoneal carcinomatosis in patients with unknown primary malignancy. Gastrointest. Endosc. 70:1266–1270.
    1. Karpathiou, G. , Stefanou D., and Froudarakis M. E.. 2015. Pleural neoplastic pathology. Respir. Med. 109:931–943.
    1. Penz, E. , Watt K. N., and Hergott C. A.. 2017. Management of malignant pleural effusion: challenges and solutions. Cancer Manag. Res. 9:229–241.
    1. Rodriguez‐Panadero, F. , Janssen J. P., and Astoul P.. 2006. Thoracoscopy: general overview and place in the diagnosis and management of pleural effusion. Eur. Respir. J. 28:409–422.
    1. Johnston, W. W. 1985. The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer 56:905–909.
    1. Antonangelo, L. , Sales R. K., Corá A. P., Acencio M. M. P., Teixeira L. R., and Vargas F. S.. 2015. Pleural fluid tumour markers in malignant pleural effusion with inconclusive cytologic results. Curr. Oncol. 22:336–341.
    1. Fetsch, P. A. , and Abati A.. 2001. Immunocytochemistry in effusion cytology: a contemporary review. Cancer 93:293–308.
    1. Laerum, O. P. , and Farsund T.. 1981. Clinical applications of flow cytometry: a review. Cytometry 1981:1–13.
    1. Sakaguchi, M. , Virmani A. K., and Ashfaq R.. 1999. Development of a sensitive, specific reverse transcriptase polymerase chain reaction‐based assay for epithelial tumour cells in effusions. Br. J. Cancer 79:416–422.
    1. Thompson, S. L. , and Compton D. A.. 2010. Proliferation of aneuploid human cells is limited by a p53‐dependent mechanism. J. Cell Biol. 188:369–381.
    1. Savic, S. , Franco N., Grilli B., de Vito Barascud A., Herzog M., Bode B., et al. 2010. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest 138:137–144.
    1. Rosolen, D. C. , Kulikowski L. D., Bottura G., Nascimento A. M., Acencio M., Teixeira L., et al. 2013. Efficacy of two fluorescence in situ hybridization (FISH) probes for diagnosing malignant pleural effusions. Lung Cancer 80:284–288.
    1. Dimashkieh, H. , Wolff D. J., Smith T. M., Houser P. M., Nietert P. J., and Yang J.. 2013. Evaluation of urovysion and cytology for bladder cancer detection: a study of 1835 paired urine samples with clinical and histologic correlation. Cancer Cytopathol. 121:591–597.
    1. Light, R. W. 2002. Clinical practice. Pleural effusion. N. Engl. J. Med. 346:1971–1977.
    1. Rovelstad, R. A. , Bartholomew L. G., and Cain J. C.. 1958. Ascites. I. The value of examination of ascitic fluid and blood for lipids and for proteins by electrophoresis. Gastroenterology 34:436–451.
    1. Flores‐Staino, C. , Darai‐Ramqvist E., Dobra K., and Hjerpe A.. 2010. Adaptation of a commercial fluorescent in situ hybridization test to the diagnosis of malignant cells in effusions. Lung Cancer 68:39–43.
    1. Wolff, D. J. , Bagg A., Cooley L. D., Dewald G. W., Hirsch B. A., Jacky P. B., et al. 2007. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J. Mol. Diagn. 9:134–143.
    1. Li, H. , Tang Z., Zhu H., Ge H., Cui S., and Jiang W.. 2016. Proteomic study of benign and malignant pleural effusion. J. Cancer Res. Clin. Oncol. 142:1191–1200.
    1. Siravegna, G. , Marsoni S., Siena S., and Bardelli A.. 2017. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14:531–548.
    1. Faggioli, F. , Vijg J., and Montagna C.. 2014. Four‐color FISH for the detection of low‐level aneuploidy in interphase cells. Methods Mol. Biol. 1136:291–300.
    1. Cora, T. , Acar H., Ceran S., and Bodur S.. 2005. Analysis of chromosomes 9 and 11 aneuploidy frequency in pleural effusion of patients with and without malignancy: interphase FISH technique. Cancer Biol. Ther. 4:248–251.
    1. Tsai, M. H. , Fang W. H., Lin S. H., Tzeng S. T., Huang C. S., Yen S. J., et al. 2011. Mapping of genetic deletions on chromosome 3 in colorectal cancer: loss of 3p25‐pter is associated with distant metastasis and poor survival. Ann. Surg. Oncol. 18:2662–2670.
    1. Arai, K. , Shibahara T., Yamamoto N., Yakushiji T., Tanaka C., and Noma H.. 2001. Frequent allelic loss/imbalance on the short arm of chromosome 3 in tongue cancer. Bull. Tokyo Dent. Coll. 42:151–157.
    1. Mooibroek, H. , Osinga J., Postmus P. E., Carritt B., and Buys C. H.. 1987. Loss of heterozygosity for a chromosome 3 sequence presumably at 3p21 in small cell lung cancer. Cancer Genet. Cytogenet. 27:361–365.
    1. Senchenko, V. N. , Anedchenko E. A., Kondratieva T. T., Krasnov G. S., Dmitriev A. A., Zabarovska V. I., et al. 2010. Simultaneous down‐regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non‐small cell lung cancer. BMC Cancer 10:75.
    1. Buchhagen, D. L. , Qiu L., and Etkind P.. 1994. Homozygous deletion, rearrangement and hypermethylation implicate chromosome region 3p14.3‐3p21.3 in sporadic breast‐cancer development. Int. J. Cancer 57:473–479.
    1. Wada, T. , Louhelainen J., Hemminki K., Adolfsson J., Wijkström H., Norming U., et al. 2001. The prevalence of loss of heterozygosity in chromosome 3, including FHIT, in bladder cancer, using the fluorescent multiplex polymerase chain reaction. BJU Int. 87:876–881.
    1. Woodward, E. R. , Skytte A. B., Cruger D. G., and Maher E. R.. 2010. Population‐based survey of cancer risks in chromosome 3 translocation carriers. Genes Chromosom. Cancer 49:52–58.
    1. Senchenko, V. N. , Kisseljova N. P., Ivanova T. A., Dmitriev A. A., Krasnov G. S., Kudryavtseva A. V., et al. 2013. Novel tumor suppressor candidates on chromosome 3 revealed by NotI‐microarrays in cervical cancer. Epigenetics 8:409–420.
    1. Sipos, E. , Hegyi K., Treszl A., Steiber Z., Mehes G., Dobos N., et al. 2017. Concurrence of chromosome 3 and 4 aberrations in human uveal melanoma. Oncol. Rep. 37:1927–1934.
    1. Lubinski, J. , Hadaczek P., Podolski J., Toloczko A., Sikorski A., McCue P., et al. 1994. Common regions of deletion in chromosome regions 3p12 and 3p14.2 in primary clear cell renal carcinomas. Cancer Res. 54:3710–3713.
    1. Larson, G. P. , Ding Y., Cheng L. S., Lundberg C., Gagalang V., Rivas G., et al. 2005. Genetic linkage of prostate cancer risk to the chromosome 3 region bearing FHIT. Cancer Res. 65:805–814.
    1. Cody, N. A. , Ouellet V., Manderson E. N., Quinn M. C. J., Filali‐Mouhim A., Tellis P., et al. 2007. Transfer of chromosome 3 fragments suppresses tumorigenicity of an ovarian cancer cell line monoallelic for chromosome 3p. Oncogene 26:618–632.
    1. Dennis, T. R. , and Stock A. D.. 1999. A molecular cytogenetic study of chromosome 3 rearrangements in small cell lung cancer: consistent involvement of chromosome band 3q13.2. Cancer Genet. Cytogenet. 113:134–140.
    1. Nishizuka, S. , Tamura G., Terashima M., and Satodate R.. 1997. Commonly deleted region on the long arm of chromosome 7 in differentiated adenocarcinoma of the stomach. Br. J. Cancer 76:1567–1571.
    1. Kasahara, K. , Taguchi T., Yamasaki I., Karashima T., Kamada M., Yuri K., et al. 2001. Fluorescence in situ hybridization to assess transitional changes of aneuploidy for chromosomes 7, 8, 10, 12, 16, X and Y in metastatic prostate cancer following anti‐androgen therapy. Int. J. Oncol. 19:543–549.
    1. Kapranos, N. , Kounelis S., Karantasis H., and Kouri E.. 2005. Numerical aberrations of chromosomes 1 and 7 by fluorescent in situ hybridization and DNA ploidy analysis in breast cancer. Breast J. 11:448–453.
    1. Scheres, J. M. , Hustinx T. W. J., and Trent J. M.. 1986. Possible involvement of unstable sites on chromosomes 7 and 14 in human cancer. Cancer Genet. Cytogenet. 19:151–158.
    1. Raimondi, S. C. , Pui C. H., and Behm F. G.. 1987. 7q32‐q36 Translocations in childhood T cell Leukemia: cytogenetic Evidence for Involvement of the T cell Receptor/9‐chain Gene. Blood 1:131–134.
    1. Barros, É. A. F. , Pontes‐Junior J., and Reis S. T.. 2017. Correlation between chromosome 9p21 locus deletion and prognosis in clinically localized prostate cancer. Int. J. Biol. Markers 32:e248–e254.
    1. El‐Mokadem, I. , Lim A., Kidd T., Garret K., Pratt N., Batty D., et al. 2016. Microsatellite alteration and immunohistochemical expression profile of chromosome 9p21 in patients with sporadic renal cell carcinoma following surgical resection. BMC Cancer 16:546.
    1. Kim, W. Y. , and Sharpless N. E.. 2006. The regulation of INK4/ARF in cancer and aging. Cell 127:265–275.
    1. Sabah, M. , Cummins R., Leader M., and Kay E.. 2006. Loss of p16 (INK4A) expression is associated with allelic imbalance/loss of heterozygosity of chromosome 9p21 in microdissected malignant peripheral nerve sheath tumors. Appl. Immunohistochem. Mol. Morphol. 14:97–102.
    1. Sabah, M. , Cummins R., Leader M., and Kay E.. 2005. Loss of p16INK4A expression is associated with allelic imbalance/loss of heterozygosity of chromosome 9p21 in microdissected synovial sarcomas. Virchows Arch. 447:842–848.
    1. Obermann, E. C. , Diss T. C., Hamoudi R. A., Munson P., Wilkins B. S., Camozzi M. L. P., et al. 2004. Loss of heterozygosity at chromosome 9p21 is a frequent finding in enteropathy‐type T‐cell lymphoma. J. Pathol. 202:252–262.
    1. Banerjee, R. , Lohse C. M., Kleinschmidt‐DeMasters B. K., and Scheithauer B. W.. 2002. A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol. 12:183–190.
    1. Sanchez‐Cespedes, M. , Decker P. A., Doffek K. M., Esteller M., Westra W. H., Alawi E. A., et al. 2001. Increased loss of chromosome 9p21 but not p16 inactivation in primary non‐small cell lung cancer from smokers. Cancer Res. 61:2092–2096.
    1. Van Der Riet, P. , Nawroz H., Hruban R. H., Corio R., Tokino K., Koch W., et al. 1994. Frequent loss of chromosome 9p21‐22 early in head and neck cancer progression. Cancer Res. 54:1156–1158.
    1. Li, B. , Kanamaru H., Noriki S., Fukuda M., and Okada K.. 1998. Numeric aberration of chromosome 17 is strongly correlated with p53 overexpression, tumor proliferation and histopathology in human bladder cancer. Int. J. Urol. 5:317–323.
    1. Miyamoto, H. , Kubota Y., Noguchi S., Takase K., Matsuzaki J., Moriyama M., et al. 2000. C‐ERBB‐2 gene amplification as a prognostic marker in human bladder cancer. Urology 55:679–683.
    1. Hislop, R. G. , Pratt N., Stocks S. C., Steel C. M., Sales M., Goudie D., et al. 2002. Karyotypic aberrations of chromosomes 16 and 17 are related to survival in patients with breast cancer. Br. J. Surg. 89:1581–1586.
    1. Kawai, M. , Komiyama H., Hosoya M., Okubo H., Fujii T., Yokoyama N., et al. 2016. Impact of chromosome 17q deletion in the primary lesion of colorectal cancer on liver metastasis. Oncol. Lett. 12:4773–4778.
    1. Dimova, I. , Orsetti B., Negre V., Rouge C., Ursule L., Lasorsa L., et al. 2009. Genomic markers for ovarian cancer at chromosomes 1, 8 and 17 revealed by array CGH analysis. Tumori 95:357–366.
    1. Rinker‐Schaeffer, C. W. , Hawkins A. L., Ru N., Dong J., Stoica G., Griffin C. A., et al. 1994. Differential suppression of mammary and prostate cancer metastasis by human chromosomes 17 and 11. Cancer Res. 54:6249–6256.
    1. Garcia, J. , Duran A., Tabernero M. D., Garcia Plaza A., Flores Corral T., Najera M. L., et al. 2003. Numerical abnormalities of chromosomes 17 and 18 in sporadic colorectal cancer: incidence and correlation with clinical and biological findings and the prognosis of the disease. Cytometry B Clin. Cytom. 51:14–20.
    1. Forsti, A. , Luo L., Vorechovsky I., Soderberg M., Lichtenstein P., and Hemminki K.. 2001. Allelic imbalance on chromosomes 13 and 17 and mutation analysis of BRCA1 and BRCA2 genes in monozygotic twins concordant for breast cancer. Carcinogenesis 22:27–33.
    1. Ioakim‐Liossi, A. , Gagos S., Athanassiades P., Athanassiadou P., Gogas J., Davaris P., et al. 1999. Changes of chromosomes 1,3, 6 and 11 in metastatic effusions arising from breast and ovarian cancer. Cancer Genet. Cytogenet. 110:34–40.
    1. Roka, S. , Fiegl M., Zojer N., Filipits M., Schuster R., Steiner B., et al. 1998. Aneuploidy of chromosome 8 as detected by interphase fluorescence in situ hybridization is a recurrent finding in primary and metastatic breast cancer. Breast Cancer Res. Treat. 48:125–133.
    1. Fiegl, M. , Haun M., Massoner A., Krugmann J., Müller‐Holzner E., Hack R., et al. 2004. Combination of cytology, fluorescence in situ hybridization for aneuploidy, and reverse‐transcriptase polymerase chain reaction for human mammaglobin/mammaglobin B expression improves diagnosis of malignant effusions. J. Clin. Oncol. 22:474–483.
    1. Liew, Z. H. , Loh T. J. Z., Lim T. K. H., Lim T. H., Khor C. J. L., Mesenas S. J., et al. 2018. Role of fluorescence in situ hybridization in diagnosing cholangiocarcinoma in indeterminate biliary strictures. J. Gastroenterol. Hepatol. 33:315–319.
    1. Virk, R. K. , Abro S., de Ubago J. M. M., Pambuccian S. E., Quek M. L., Wojcik E. M., et al. 2017. The value of the UroVysion® FISH assay in the risk‐stratification of patients with “atypical urothelial cells” in urinary cytology specimens. Diagn. Cytopathol. 45:481–500.
    1. Lavery, H. J. , Zaharieva B., and McFaddin A.. 2017. A prospective comparison of UroVysion FISH and urine cytology in bladder cancer detection. BMC Cancer 17:247.
    1. Gomella, L. G. , Mann M. J., Cleary R. C., Hubosky S. G., Bagley D. H., Thumar A. B., et al. 2017. Fluorescence in situ hybridization (FISH) in the diagnosis of bladder and upper tract urothelial carcinoma: the largest single‐institution experience to date. Can. J. Urol. 24:8620–8626.
    1. Gopalakrishna, A. , Fantony J. J., and Longo T. A.. 2017. Anticipatory positive urine tests for bladder cancer. Ann. Surg. Oncol. 24:1747–1753.
    1. Mischinger, J. , Guttenberg L. P., Hennenlotter J., Gakis G., Aufderklamm S., Rausch S., et al. 2017. Comparison of different concepts for interpretation of chromosomal aberrations in urothelial cells detected by fluorescence in situ hybridization. J. Cancer Res. Clin. Oncol. 143:677–685.
    1. Miki, Y. , Neat M., and Chandra A.. 2017. Application of The Paris System to atypical urine cytology samples: correlation with histology and UroVysion® FISH. Cytopathology 28:88–95.
    1. Zhou, A. G. , Liu Y., and Cyr M. S.. 2016. Role of tetrasomy for the diagnosis of urothelial carcinoma using UroVysion fluorescent in situ hybridization. Arch. Pathol. Lab. Med. 140:552–559.
    1. Dudley, J. C. , Zheng Z., McDonald T., Le L. P., Dias‐Santagata D., Borger D., et al. 2016. Next‐generation sequencing and fluorescence in situ hybridization have comparable performance characteristics in the analysis of pancreaticobiliary brushings for malignancy. J. Mol. Diagn. 18:124–130.
    1. Glass, R. E. , Coutsouvelis C., Sheikh‐Fayyaz S., Chau K., Rosen L., Brenkert R., et al. 2016. Two‐tiered subdivision of atypia on urine cytology can improve patient follow‐up and optimize the utility of UroVysion. Cancer Cytopathol. 124:188–195.
    1. Fritcher, E. G. B. , Voss J. S., Brankley S. M., Campion M. B., Jenkins S. M., Keeney M. E., et al. 2015. An optimized set of fluorescence in situ hybridization probes for detection of pancreatobiliary tract cancer in cytology brush samples. Gastroenterology 149:1813–1824.
    1. Fritsche, H. M. , Burger M., Dietmaier W., Denzinger S., Bach E., Otto W., et al. 2010. Multicolor FISH (UroVysion) facilitates follow‐up of patients with high‐grade urothelial carcinoma of the bladder. Am. J. Clin. Pathol. 134:597–603.
    1. Breen, V. , Kasabov N., Kamat A. M., Jacobson E., Suttie J. M., O'Sullivan P. J., et al. 2015. A holistic comparative analysis of diagnostic tests for urothelial carcinoma: a study of Cxbladder Detect, UroVysion® FISH, NMP22® and cytology based on imputation of multiple datasets. BMC Med. Res. Methodol. 15:45.
    1. Todenhöfer, T. , Hennenlotter J., Esser M., Mohrhardt S., Aufderklamm S., Böttge J., et al. 2014. Stepwise application of urine markers to detect tumor recurrence in patients undergoing surveillance for non‐muscle‐invasive bladder cancer. Dis. Markers 2014:973406.
    1. Vlajnic, T. , Somaini G., Savic S., Barascud A., Grilli B., Herzog M., et al. 2014. Targeted multiprobe fluorescence in situ hybridization analysis for elucidation of inconclusive pancreatobiliary cytology. Cancer Cytopathol. 122:627–34.
    1. Ho, C. C. , Tan W. P., Pathmanathan R., Tan W. K., and Tan H. M.. 2013. Fluorescence‐in‐situ‐hybridization in the surveillance of urothelial cancers: can use of cystoscopy or ureteroscopy be deferred? Asian Pac. J. Cancer Prev. 14:4057–4059.
    1. Todenhöfer, T. , Hennenlotter J., Tews V., Gakis G., Aufderklamm S., Kuehs U., et al. 2013. Impact of different grades of microscopic hematuria on the performance of urine‐based markers for the detection of urothelial carcinoma. Urol. Oncol. 31:1148–1154.
    1. Youssef, R. F. , Schlomer B. J., Ho R., Sagalowsky A. I., Ashfaq R., and Lotan Y.. 2012. Role of fluorescence in situ hybridization in bladder cancer surveillance of patients with negative cytology. Urol Oncol. 30:273–7.
    1. Caraway, N. P. , Khanna A., Fernandez R. L., Payne L., Bassett R. L., Zhang H. Z., et al. 2010. Fluorescence in situ hybridization for detecting urothelial carcinoma: a clinicopathologic study. Cancer Cytopathol. 118:259–268.
    1. Mian, C. , Mazzoleni G., Vikoler S., Martini T., Knüchel‐Clark R., Zaak D., et al. 2010. Fluorescence in situ hybridisation in the diagnosis of upper urinary tract tumours. Eur. Urol. 58:288–292.
    1. Kehinde, E. O. , Al‐Mulla F., Kapila K., and Anim J. T.. 2011. Comparison of the sensitivity and specificity of urine cytology, urinary nuclear matrix protein‐22 and multitarget fluorescence in situ hybridization assay in the detection of bladder cancer. Scand. J. Urol. Nephrol. 45:113–121.

Source: PubMed

3
Předplatit