Recent Development of Augmented Reality in Surgery: A Review

P Vávra, J Roman, P Zonča, P Ihnát, M Němec, J Kumar, N Habib, A El-Gendi, P Vávra, J Roman, P Zonča, P Ihnát, M Němec, J Kumar, N Habib, A El-Gendi

Abstract

Introduction: The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures.

Methods: We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms "augmented reality" and "surgery." Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review.

Conclusions: The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.

Figures

Figure 1
Figure 1
A scheme showing the basic principles of augmented reality.

References

    1. Tabrizi L. B., Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. Journal of Neurosurgery. 2015;123:206–211. doi: 10.3171/2014.9.JNS141001.
    1. Sugimoto M., Yasuda H., Koda K., et al. Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. Journal Hepato-Biliary-Pancreatic Sciences. 2010;17:629–636. doi: 10.1007/s00534-009-0199-y.
    1. Gavaghan K. A., Peterhans M., Oliveira-Santos T., Weber S. A portable image overlay projection device for computer-aided open liver surgery. IEEE Transactions on Biomedical Engineering. 2011;58:1855–1864. doi: 10.1109/TBME.2011.2126572.
    1. Gavaghan K., Oliveira-Santos T., Peterhans M., et al. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies. International Journal of Computer Assisted Radiology and Surgery. 2012;7:547–556. doi: 10.1007/s11548-011-0660-7.
    1. Wen R., Chui C. K., Ong S. H., Lim K. B., Chang S. K. Y. Projection-based visual guidance for robot-aided RF needle insertion. International Journal of Computer Assisted Radiology and Surgery. 2013;8:1015–1025. doi: 10.1007/s11548-013-0897-4.
    1. Kocev B., Ritter F., Linsen L. Projector-based surgeon-computer interaction on deformable surfaces. International Journal of Computer Assisted Radiology and Surgery. 2014;9:301–312. doi: 10.1007/s11548-013-0928-1.
    1. Pessaux P., Diana M., Soler L., Piardi T., Mutter D., Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbeck’s Archives of Surgery. 2015;400:381–385. doi: 10.1007/s00423-014-1256-9.
    1. Badiali G., Ferrari V., Cutolo F., et al. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. Journal of Cranio-Maxillofacial Surgery. 2014;42:1970–1976. doi: 10.1016/j.jcms.2014.09.001.
    1. Watanabe E., Satoh M., Konno T., Hirai M., Yamaguchi T. The trans-visible navigator: a see-through neuronavigation system using augmented reality. World Neurosurgery. 2016;87:399–405. doi: 10.1016/j.wneu.2015.11.084.
    1. Inoue D., Cho B., Mori M., et al. Preliminary study on the clinical application of augmented reality neuronavigation. Journal of Neurological Surgery Part A. 2013;74:71–76. doi: 10.1055/s-0032-1333415.
    1. Callovini G., Sherkat S., Callovini G., Gazzeri R. Frameless nonstereotactic image-guided surgery of supratentorial lesions: introduction to a safe and inexpensive technique. Journal of Neurological Surgery Part A. 2014;75:365–370. doi: 10.1055/s-0033-1358607.
    1. Pessaux P., Diana M., Soler L., Piardi T., Mutter D., Marescaux J. Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance. Surgical Endoscopy. 2014;28:2493–2498. doi: 10.1007/s00464-014-3465-2.
    1. Okamoto T., Onda S., Yanaga K., Suzuki N., Hattori A. Clinical application of navigation surgery using augmented reality in the abdominal field. Surgery Today. 2015;45:397–406. doi: 10.1007/s00595-014-0946-9.
    1. Marescaux J., Diana M. Inventing the future of surgery. World Journal of Surgery. 2015;39:615–622. doi: 10.1007/s00268-014-2879-2.
    1. Kang X., Azizian M., Wilson E., et al. Stereoscopic augmented reality for laparoscopic surgery. Surgical Endoscopy. 2014;28:2227–2235. doi: 10.1007/s00464-014-3433-x.
    1. Gonzalez S. J., Guo Y. H., Lee M. C. Feasibility of augmented reality glasses for real-time, 3-dimensional (3D) intraoperative guidance. Journal of the American College of Surgeons. 2014;219:S64–S64.
    1. Shekhar R., Dandekar O., Bhat V., et al. Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surgical Endoscopy. 2010;24:1976–1985. doi: 10.1007/s00464-010-0890-8.
    1. Kenngott H. G., Wagner M., Gondan M., et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surgical Endoscopy. 2014;28:933–940. doi: 10.1007/s00464-013-3249-0.
    1. Tsutsumi N., Tomikawa M., Uemura M., et al. Image-guided laparoscopic surgery in an open MRI operating theater. Surgical Endoscopy. 2013;27:2178–2184. doi: 10.1007/s00464-012-2737-y.
    1. Kranzfelder M., Bauer M., Magg M., et al. Image guided surgery. Endoskopie Heute. 2014;27:154–158.
    1. Nam W. H., Kang D. G., Lee D., Lee J. Y., Ra J. B. Automatic registration between 3D intra-operative ultrasound and pre-operative CT images of the liver based on robust edge matching. Physics in Medicine and Biology. 2012;57:69–91. doi: 10.1088/0031-9155/57/1/69.
    1. Shakur S. F., Luciano C. J., Kania P., et al. Usefulness of a virtual reality percutaneous trigeminal rhizotomy simulator in neurosurgical training. Operative Neurosurgery. 2015;11:420–425. doi: 10.1227/NEU.0000000000000853.
    1. Leblanc F., Champagne B. J., Augestad K. M., et al. Colorectal Surg Training Group: a comparison of human cadaver and augmented reality simulator models for straight laparoscopic colorectal skills acquisition training. Journal of the American College of Surgeons. 2010;211:250–255. doi: 10.1016/j.jamcollsurg.2010.04.002.
    1. Lelos N., Campos P., Sugand K., Bailey C., Mirza K. Augmented reality dynamic holography for neurology. Journal of Neurology, Neurosurgery, and Psychiatry. 2014;85:p. 1.
    1. Vera A. M., Russo M., Mohsin A., Tsuda S. Augmented reality telementoring (ART) platform: a randomized controlled trial to assess the efficacy of a new surgical education technology. Surgical Endoscopy. 2014;28:3467–3472. doi: 10.1007/s00464-014-3625-4.
    1. Lahanas V., Loukas C., Smailis N., Georgiou E. A novel augmented reality simulator for skills assessment in minimal invasive surgery. Surgical Endoscopy. 2015;29:2224–2234. doi: 10.1007/s00464-014-3930-y.
    1. Profeta A. C., Schilling C., McGurk M. Augmented reality visualization in head and neck surgery: an overview of recent findings in sentinel node biopsy and future perspectives. The British Journal of Oral & Maxillofacial Surgery. 2016;54:694–696. doi: 10.1016/j.bjoms.2015.11.008.
    1. Shenai M. B., Dillavou M., Shum C., et al. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance. Neurosurgery. 2011;68:p. 8.
    1. Davis M. C., Can D. D., Pindrik J., Rocque B. G., Johnston J. M. Virtual interactive presence in global surgical education: international collaboration through augmented reality. World Neurosurgery. 2016;86:103–111. doi: 10.1016/j.wneu.2015.08.053.
    1. Vemuri A. S., Wu J. C. H., Liu K. C., Wu H. S. Deformable three-dimensional model architecture for interactive augmented reality in minimally invasive surgery. Surgical Endoscopy. 2012;26:3655–3662. doi: 10.1007/s00464-012-2395-0.
    1. Yoshino M., Saito T., Kin T., et al. A microscopic optically tracking navigation system that uses high-resolution 3D computer graphics. Neurologia Medico-Chirurgica. 2015;55:674–679. doi: 10.2176/nmc.tn.2014-0278.
    1. Okamoto T., Onda S., Matsumoto M., et al. Utility of augmented reality system in hepatobiliary surgery. Journal Hepato-Biliary-Pancreatic Sciences. 2013;20:249–253. doi: 10.1007/s00534-012-0504-z.
    1. Ieiri S., Uemura M., Konishi K., et al. Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatric Surgery International. 2012;28:341–346. doi: 10.1007/s00383-011-3034-x.
    1. Kersten-Oertel M., Gerard I., Drouin S., et al. Augmented reality in neurovascular surgery: feasibility and first uses in the operating room. International Journal of Computer Assisted Radiology and Surgery. 2015;10:1823–1836. doi: 10.1007/s11548-015-1163-8.
    1. Okamoto T., Onda S., Yasuda J., Yanaga K., Suzuki N., Hattori A. Navigation surgery using an augmented reality for pancreatectomy. Digestive Surgery. 2015;32:117–123. doi: 10.1159/000371860.
    1. Qu M., Hou Y. K., Xu Y. R., et al. Precise positioning of an intraoral distractor using augmented reality in patients with hemifacial microsomia. Journal of Cranio-Maxillofacial Surgery. 2015;43:106–112. doi: 10.1016/j.jcms.2014.10.019.
    1. Liang J. T., Doke T., Onogi S., et al. A fluorolaser navigation system to guide linear surgical tool insertion. International Journal of Computer Assisted Radiology and Surgery. 2012;7:931–939. doi: 10.1007/s11548-012-0743-0.
    1. Onda S., Okamoto T., Kanehira M., et al. Short rigid scope and stereo-scope designed specifically for open abdominal navigation surgery: clinical application for hepatobiliary and pancreatic surgery. Journal Hepato-Biliary-Pancreatic Sciences. 2013;20:448–453. doi: 10.1007/s00534-012-0582-y.
    1. Onda S., Okamoto T., Kanehira M., et al. Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system. Journal Hepato-Biliary-Pancreatic Sciences. 2014;21:281–287. doi: 10.1002/jhbp.25.
    1. Vigh B., Muller S., Ristow O., et al. The use of a head-mounted display in oral implantology: a feasibility study. International Journal of Computer Assisted Radiology and Surgery. 2014;9:71–78. doi: 10.1007/s11548-013-0912-9.
    1. Wild E., Teber D., Schmid D., et al. Robust augmented reality guidance with fluorescent markers in laparoscopic surgery. International Journal of Computer Assisted Radiology and Surgery. 2016;11:899–907. doi: 10.1007/s11548-016-1385-4.
    1. Konishi K., Hashizume M., Nakamoto M., et al. Augmented reality navigation system for endoscopic surgery based on three-dimensional ultrasound and computed tomography: application to 20 clinical cases. In: Lemke H. U., Inamura K., Doi K., Vannier M. W., Farman A. G., editors. CARS 2005: Computer Assisted Radiology and Surgery. Vol. 1281. Amsterdam: Elsevier Science Bv; 2005. pp. 537–542.
    1. Nakamoto M., Nakada K., Sato Y., Konishi K., Hashizume M., Tamura S. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery. IEEE Transactions on Medical Imaging. 2008;27:255–270. doi: 10.1109/TMI.2007.911003.
    1. Lapeer R. J., Jeffrey S. J., Dao J. T., et al. Using a passive coordinate measurement arm for motion tracking of a rigid endoscope for augmented-reality image-guided surgery. International Journal of Medical Robotics and Computer Assisted Surgery. 2014;10:65–77. doi: 10.1002/rcs.1513.
    1. Conrad C., Fusaglia M., Peterhans M., Lu H. X., Weber S., Gayet B. Augmented reality navigation surgery facilitates laparoscopic rescue of failed portal vein embolization. Journal of the American College of Surgeons. 2016;223:E31–E34. doi: 10.1016/j.jamcollsurg.2016.06.392.
    1. Nicolau S., Soler L., Mutter D., Marescaux J. Augmented reality in laparoscopic surgical oncology. Surgical Oncology-Oxford. 2011;20:189–201. doi: 10.1016/j.suronc.2011.07.002.
    1. Hostettler A., Nicolau S. A., Remond Y., Marescaux J., Soler L. A real-time predictive simulation of abdominal viscera positions during quiet free breathing. Progress in Biophysics and Molecular Biology. 2010;103:169–184. doi: 10.1016/j.pbiomolbio.2010.09.017.
    1. Haouchine N., Dequidt J., Berger M. O., Cotin S. Deformation-based augmented reality for hepatic surgery. Studies in Health Technology and Informatics. 2013;184:182–188. doi: 10.3233/978-1-61499-209-7-182.
    1. Kilgus T., Heim E., Haase S., et al. Mobile markerless augmented reality and its application in forensic medicine. International Journal of Computer Assisted Radiology and Surgery. 2015;10:573–586. doi: 10.1007/s11548-014-1106-9.
    1. Hayashi Y., Misawa K., Hawkes D. J., Mori K. Progressive internal landmark registration for surgical navigation in laparoscopic gastrectomy for gastric cancer. International Journal of Computer Assisted Radiology and Surgery. 2016;11:837–845. doi: 10.1007/s11548-015-1346-3.
    1. Kowalczuk J., Meyer A., Carlson J., et al. Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery. Surgical Endoscopy. 2012;26:3413–3417. doi: 10.1007/s00464-012-2355-8.
    1. Krishnan R., Raabe A., Seifert V. Accuracy and applicability of laser surface scanning as new registration technique in image-guided neurosurgery. In: Lemke H. U., Inamura K., Doi K., Vannier M. W., Farman A. G., JHC R., editors. Cars 2004: Computer Assisted Radiology and Surgery. Vol. 1268. Amsterdam: Elsevier Science Bv; 2004. pp. 678–683.
    1. Schicho K., Figl M., Seemann R., et al. Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy - technical note. Journal of Neurosurgery. 2007;106:704–709. doi: 10.3171/jns.2007.106.4.704.
    1. Lee S. C., Fuerst B., Fotouhi J., Fischer M., Osgood G., Navab N. Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization. International Journal of Computer Assisted Radiology and Surgery. 2016;11:967–975. doi: 10.1007/s11548-016-1396-1.
    1. Nosrati M. S., Amir-Khalili A., Peyrat J. M., et al. Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors. International Journal of Computer Assisted Radiology and Surgery. 2016;11:1409–1418. doi: 10.1007/s11548-015-1331-x.
    1. Amir-Khalili A., Hamarneh G., Peyrat J. M., et al. Automatic segmentation of occluded vasculature via pulsatile motion analysis in endoscopic robot-assisted partial nephrectomy video. Medical Image Analysis. 2015;25:103–110. doi: 10.1016/j.media.2015.04.010.
    1. Li L., Yang J., Chu Y. K., et al. A novel augmented reality navigation system for endoscopic sinus and skull base surgery: a feasibility study. PLoS One. 2016;11:p. 17. doi: 10.1371/journal.pone.0146996.
    1. Muller M., Rassweiler M. C., Klein J., et al. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. International Journal of Computer Assisted Radiology and Surgery. 2013;8:663–675. doi: 10.1007/s11548-013-0828-4.
    1. Deng W. W., Li F., Wang M. N., Song Z. J. Easy-to-use augmented reality neuronavigation using a wireless tablet PC. Stereotactic and Functional Neurosurgery. 2014;92:17–24. doi: 10.1159/000354816.
    1. Katic D., Spengler P., Bodenstedt S., et al. A system for context-aware intraoperative augmented reality in dental implant surgery. International Journal of Computer Assisted Radiology and Surgery. 2015;10:101–108. doi: 10.1007/s11548-014-1005-0.
    1. Cabrilo I., Bijlenga P., Schaller K. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations. Acta Neurochirurgica. 2014;156:1769–1774. doi: 10.1007/s00701-014-2183-9.
    1. Riechmann M., Kahrs L., Ulmer C., Raczkowsky J., Lamadé W., Wörn H. Visualisierungskonzept für die projektorbasierte Erweiterte Realität in der Leberchirurgie. Proceeding of BMT. 2006;209:1–2.
    1. Volonte F., Pugin F., Bucher P., Sugimoto M., Ratib O., Morel P. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. Journal Hepato-Biliary-Pancreatic Sciences. 2011;18:506–509. doi: 10.1007/s00534-011-0385-6.
    1. Souzaki R., Ieiri S., Uemura M., et al. An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. Journal of Pediatric Surgery. 2013;48:2479–2483. doi: 10.1016/j.jpedsurg.2013.08.025.
    1. Wang A., Mirsattari S. M., Parrent A. G., Peters T. M. Fusion and visualization of intraoperative cortical images with preoperative models for epilepsy surgical planning and guidance. Computer Aided Surgery. 2011;16:149–160. doi: 10.3109/10929088.2011.585805.
    1. Mert A., Buehler K., Sutherland G. R., et al. Brain tumor surgery with 3-dimensional surface navigation. Neurosurgery. 2012;71:286–294. doi: 10.1227/NEU.0b013e31826a8a75.
    1. Cabrilo I., Bijlenga P., Schaller K. Augmented reality in the surgery of cerebral aneurysms: a technical report. Neurosurgery. 2014;10:252–260. doi: 10.1227/NEU.0000000000000328.
    1. Cabrilo I., Sarrafzadeh A., Bijlenga P., Landis B. N., Schaller K. Augmented reality-assisted skull base surgery. Neurochirurgie. 2014;60:304–306. doi: 10.1016/j.neuchi.2014.07.001.
    1. Schoob A., Kundrat D., Kleingrothe L., Kahrs L. A., Andreff N., Ortmaier T. Tissue surface information for intraoperative incision planning and focus adjustment in laser surgery. International Journal of Computer Assisted Radiology and Surgery. 2015;10:171–181. doi: 10.1007/s11548-014-1077-x.
    1. Rodas N. L., Padoy N. Seeing is believing: increasing intraoperative awareness to scattered radiation in interventional procedures by combining augmented reality, Monte Carlo simulations and wireless dosimeters. International Journal of Computer Assisted Radiology and Surgery. 2015;10:1181–1191. doi: 10.1007/s11548-015-1161-x.
    1. Londei R., Esposito M., Diotte B., et al. Intra-operative augmented reality in distal locking. International Journal of Computer Assisted Radiology and Surgery. 2015;10:1395–1403. doi: 10.1007/s11548-015-1169-2.
    1. Shen F. Y., Chen B. L., Guo Q. S., Qi Y., Shen Y. Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. International Journal of Computer Assisted Radiology and Surgery. 2013;8:169–179. doi: 10.1007/s11548-012-0775-5.
    1. Zhu M., Chai G., Zhang Y., Ma X. F., Gan J. L. Registration strategy using occlusal splint based on augmented reality for mandibular angle oblique split osteotomy. The Journal of Craniofacial Surgery. 2011;22:1806–1809. doi: 10.1097/SCS.0b013e31822e8064.
    1. Weber S., Klein M., Hein A., Krueger T., Lueth T. C., Bier J. The navigated image viewer - evaluation in maxillofacial surgery. In: Ellis R. E., Peters T. M., editors. Medical Image Computing and Computer-Assisted Intervention - Miccai 2003, Pt 1. Vol. 2878. Berlin: Springer-Verlag Berlin; 2003. pp. 762–769.
    1. Nikou C., Digioia A. M., Blackwell M., Jaramaz B., Kanade T. Augmented reality imaging technology for orthopaedic surgery. Operative Techniques in Orthopaedics. 2000;10:82–86. doi: 10.1016/S1048-6666(00)80047-6.
    1. Blackwell M., Morgan F., DiGioia A. M. Augmented reality and its future in orthopaedics. Clinical Orthopaedics and Related Research. 1998;354:111–122. doi: 10.1097/00003086-199809000-00014.
    1. Wagner A., Rasse M., Millesi W., Ewers R. Virtual reality for orthognathic surgery: the augmented reality environment concept. Journal of Oral and Maxillofacial Surgery. 1997;55:456–462. doi: 10.1016/S0278-2391(97)90689-3.
    1. Hughes-Hallett A., Mayer E. K., Pratt P., Mottrie A., Darzi A., Vale J. The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. International Journal of Medical Robotics and Computer Assisted Surgery. 2015;11:8–14. doi: 10.1002/rcs.1596.
    1. Volonte F., Pugin F., Buchs N. C., et al. Console-integrated stereoscopic OsiriX 3D volume-rendered images for da Vinci colorectal robotic surgery. Surgical Innovation. 2013;20:158–163. doi: 10.1177/1553350612446353.
    1. Cabrilo I., Schaller K., Bijlenga P. Augmented reality-assisted bypass surgery: embracing minimal invasiveness. World Neurosurgery. 2015;83:596–602. doi: 10.1016/j.wneu.2014.12.020.
    1. Lin L., Shi Y. Y., Tan A., et al. Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms-a feasibility study. Journal of Cranio-Maxillofacial Surgery. 2016;44:215–223. doi: 10.1016/j.jcms.2015.10.024.
    1. Fischer M., Fuerst B., Lee S. C., et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement. International Journal of Computer Assisted Radiology and Surgery. 2016;11:1007–1014. doi: 10.1007/s11548-016-1363-x.
    1. Ntourakis D., Memeo R., Soler L., Marescaux J., Mutter D., Pessaux P. Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World Journal of Surgery. 2016;40:419–426. doi: 10.1007/s00268-015-3229-8.
    1. Hallet J., Soler L., Diana M., et al. Trans-thoracic minimally invasive liver resection guided by augmented reality. Journal of the American College of Surgeons. 2015;220:E55–E60. doi: 10.1016/j.jamcollsurg.2014.12.053.
    1. Brouwer O. R., Van den Berg N., Matheron H., et al. Feasibility of image guided sentinel node biopsy using augmented reality and SPECT/CT-based 3D navigation. Annals of Surgical Oncology. 2013;20:S103–S103.
    1. Ukimura O., Gill I. S. Imaging-assisted endoscopic surgery: Cleveland clinic experience. Journal of Endourology. 2008;22:803–809. doi: 10.1089/end.2007.9823.
    1. D'Agostino J., Wall J., Soler L., Vix M., Duh Q. Y., Marescaux J. Virtual neck exploration for parathyroid adenomas a first step toward minimally invasive image-guided surgery. JAMA Surgery. 2013;148:232–238. doi: 10.1001/jamasurg.2013.739.
    1. D'Agostino J., Diana M., Vix M., et al. Three-dimensional metabolic and radiologic gathered evaluation using VR-RENDER fusion: a novel tool to enhance accuracy in the localization of parathyroid adenomas. World Journal of Surgery. 2013;37:1618–1625. doi: 10.1007/s00268-013-2021-x.
    1. Marescaux J., Rubino F., Arenas M., Mutter D., Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA: The Journal of the American Medical Association. 2004;292:2214–2215. doi: 10.1001/jama.292.18.2214-c.
    1. Winne C., Khan M., Stopp F., Jank E., Keeve E. Overlay visualization in endoscopic ENT surgery. International Journal of Computer Assisted Radiology and Surgery. 2011;6:401–406. doi: 10.1007/s11548-010-0507-7.
    1. Mezzana P., Scarinci F., Marabottini N. Augmented reality in oculoplastic surgery: first iPhone application. Plastic and Reconstructive Surgery. 2011;127:57E–58E. doi: 10.1097/PRS.0b013e31820632eb.
    1. Mochizuki Y., Hosaka A., Kamiuchi H., et al. New simple image overlay system using a tablet PC for pinpoint identification of the appropriate site for anastomosis in peripheral arterial reconstruction. Surgery Today. 2016;46:1387–1393. doi: 10.1007/s00595-016-1326-4.
    1. Currie M. E., McLeod A. J., Moore J. T., et al. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations. 2016;11:31–39. doi: 10.1097/IMI.0000000000000235.
    1. Balaphas A., Buchs N. C., Meyer J., Hagen M. E., Morel P. Partial splenectomy in the era of minimally invasive surgery: the current laparoscopic and robotic experiences. Surgical Endoscopy. 2015;29:3618–3627. doi: 10.1007/s00464-015-4118-9.
    1. Volonte F., Buchs N. C., Pugin F., et al. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the da Vinci (TM) robotic console. International Journal of Medical Robotics and Computer Assisted Surgery. 2013;9:E34–E38.
    1. Watson J. R., Martirosyan N., Skoch J., Lemole G. M., Anton R., Romanowski M. Augmented microscopy with near-infrared fluorescence detection. In: Pogue B. W., Gioux S., editors. Molecular-Guided Surgery: Molecules, Devices, and Applications. Vol. 9311. Bellingham: Spie-Int Soc Optical Engineering; 2015.
    1. Diana M., Halvax P., Dallemagne B., et al. Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surgical Endoscopy. 2014;28:3108–3118. doi: 10.1007/s00464-014-3592-9.
    1. Diana M., Noll E., Diemunsch P., et al. Enhanced-reality video fluorescence a real-time assessment of intestinal viability. Annals of Surgery. 2014;259:700–707. doi: 10.1097/SLA.0b013e31828d4ab3.
    1. Martirosyan N. L., Skoch J., Watson J. R., Lemole G. M., Romanowski M. Integration of indocyanine green videoangiography with operative microscope: augmented reality for interactive assessment of vascular structures and blood flow. Operative Neurosurgery. 2015;11:252–257. doi: 10.1227/NEU.0000000000000681.
    1. Koreeda Y., Kobayashi Y., Ieiri S., et al. Virtually transparent surgical instruments in endoscopic surgery with augmentation of obscured regions. International Journal of Computer Assisted Radiology and Surgery. 2016;11:1927–1936. doi: 10.1007/s11548-016-1384-5.
    1. Marcus H. J., Pratt P., Hughes-Hallett A., et al. Comparative effectiveness and safety of image guidance systems in neurosurgery: a preclinical randomized study. Journal of Neurosurgery. 2015;123:307–313. doi: 10.3171/2014.10.JNS141662.
    1. Hansen C., Wieferich J., Ritter F., Rieder C., Peitgen H. O. Illustrative visualization of 3D planning models for augmented reality in liver surgery. International Journal of Computer Assisted Radiology and Surgery. 2010;5:133–141. doi: 10.1007/s11548-009-0365-3.

Source: PubMed

3
Předplatit