Dietary Adjustments to Altitude Training in Elite Endurance Athletes; Impact of a Randomized Clinical Trial With Antioxidant-Rich Foods

Anu E Koivisto-Mørk, Ingvild Paur, Gøran Paulsen, Ina Garthe, Truls Raastad, Nasser E Bastani, Rune Blomhoff, Siv K Bøhn, Anu E Koivisto-Mørk, Ingvild Paur, Gøran Paulsen, Ina Garthe, Truls Raastad, Nasser E Bastani, Rune Blomhoff, Siv K Bøhn

Abstract

Background: Altitude training stresses several physiological and metabolic processes and alters the dietary needs of the athletes. International Olympic Committee (IOC)'s Nutrition Expert Group suggests that athletes should increase intake of energy, carbohydrate, iron, fluid, and antioxidant-rich foods while training at altitude. Objective: We investigated whether athletes adjust their dietary intake according to the IOC's altitude-specific dietary recommendations, and whether an in-between meal intervention with antioxidant-rich foods altered the athletes' dietary composition and nutrition-related blood parameters (mineral, vitamin, carotenoid, and hormone concentrations). Design: The dietary adjustments to altitude training (3 weeks at 2,320 m) were determined for 31 elite endurance athletes (23 ± 5 years, 23 males, 8 females) by six interviewer-administered 24-h dietary recalls on non-consecutive days; three before and during the altitude camp. The additional effect of in -between meal intervention with eucaloric antioxidant-rich or control snacks (1,000 kcal/day) was tested in a randomized controlled trial with parallel design. Results: At altitude the athletes increased their energy intake by 35% (1,430 ± 630 kcal/day, p < 0.001), the provided snacks accounting for 70% of this increase. Carbohydrate intake increased from 6.5 ± 1.8 g/kg body weight (BW) (50 E%) to 9.3 ± 2.1 g/kg BW (53 E%) (p < 0.001), with no difference between the antioxidant and control group. Dietary iron, fluid, and antioxidant-rich food intake increased by 37, 38, and 104%, respectively, in the whole cohort. The intervention group had larger increases in polyunsaturated fatty acids (PUFA), ω3 PUFA (n-3 fatty acids), ω6 PUFA (n-6 fatty acids), fiber, vitamin C, folic acid, and copper intake, while protein intake increased more among the controls, reflecting the nutritional content of the snacks. Changes in the measured blood minerals, vitamins, and hormones were not differentially affected by the intervention except for the carotenoid; zeaxanthin, which increased more in the intervention group (p < 0.001). Conclusions: Experienced elite endurance athletes increased their daily energy, carbohydrate, iron, fluid, and antioxidant-rich food intake during a 3-week training camp at moderate altitude meeting most of the altitude-specific dietary recommendations. The intervention with antioxidant-rich snacks improved the composition of the athletes' diets but had minimal impact on the measured nutrition-related blood parameters. Clinical Trial Registry Number: NCT03088891 (www.clinicaltrials.gov), Norwegian registry number: 626539 (https://rekportalen.no/).

Keywords: altitude training; carbohydrate; dietary assessment; dietary intervention; hypoxia; nutrition; oxidative stress.

Copyright © 2020 Koivisto-Mørk, Paur, Paulsen, Garthe, Raastad, Bastani, Blomhoff and Bøhn.

Figures

Figure 1
Figure 1
Experimental design and timeline of testing before, during and after the 3-week altitude training camp at 2,320 m above the sea level (A), and Consort flow chart of the study participants (B). 1Includes DXA, VO2max, hbmass, 100 m swimming as previously described (Koivisto et al., 2018).
Figure 2
Figure 2
Mean daily energy intake pre-altitude and at altitude (2,320 m) in the whole population, with a dotted reference line to a healthy (non-athlete) Norwegian population (Totland et al., 2012) (A), and mean energy contribution from carbohydrate, protein, and fat of the athletes' diets pre-altitude and at altitude (B). *indicates significant difference, p < 0.001. P-value is obtained from paired t-test.
Figure 3
Figure 3
Relative change in the mean daily intake of principal nutrients for athletes training at altitude; energy, carbohydrate, iron, fluid, and antioxidant-rich foods in the antioxidant (n = 16) and control group (n = 15). Presented as mean altitude-sea level intra-individual change (%) and standard deviation. *indicates significant difference, p < 0.05. P-value is obtained from paired t-test.
Figure 4
Figure 4
Change in the mean daily intake of macronutrients [fiber (A), protein (B), polyunsaturated fatty acids (PUFA), ω3 PUFA, and ω6 PUFA (C)] from Sea level to Altitude in the antioxidant and control group. Presented as mean Sea level—Altitude intra-individual change (%) and standard deviation. *indicates significant difference, p < 0.05. The p-value is obtained from comparing the change from Sea level to Altitude between the groups using t-test or MW tests depending on the normality of the data.
Figure 5
Figure 5
Mean daily intake of micronutrients before (sea level) (A) and during (altitude) (B) the 3-week altitude training camp as compared to recommended daily allowances (RDA) (dotted line) (Ministers NCo, 2012).
Figure 6
Figure 6
Change in the mean daily intake of micronutrients (folic acid, copper, vitamin C) from Sea level to Altitude in the antioxidant and control group. Presented as mean Sea level—Altitude intra-individual change (%) and standard deviation. *indicates significant difference, p < 0.05. The p-value is obtained from comparing the change from Sea level to Altitude between the groups using t-test or MW tests depending on the normality of the data.
Figure 7
Figure 7
Carotenoid (zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene, lycopene, and lutein) concentration pre-altitude (1), on day 5 (2), and 18 (3) at altitude (2,320 m), and post-altitude (4) in the antioxidant and control group. **mixed model analyses indicate significant time x group effects for zeaxanthin. The “qplot” function in the R (R for statistical computing, Vienna, Austria, Version 3.6.1.)—packages “ggplot2” and the function “geom smooth”.

References

    1. Abdel-Aal el S. M., Akhtar H., Zaheer K., Ali R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5, 1169–1185. 10.3390/nu5041169
    1. Bartsch P., Saltin B. (2008). General introduction to altitude adaptation and mountain sickness. Scand. J. Med. Sci. Sports. 18(Suppl. 1), 1–10. 10.1111/j.1600-0838.2008.00827.x
    1. Bastani N. E., Kostovski E., Sakhi A. K., Karlsen A., Carlsen M. H., Hjeltnes N., et al. . (2012). Reduced antioxidant defense and increased oxidative stress in spinal cord injured patients. Arch. Phys. Med. Rehabil. 93, 2223–2228 e2. 10.1016/j.apmr.2012.06.021
    1. Beis L. Y., Willkomm L., Ross R., Bekele Z., Wolde B., Fudge B., et al. . (2011). Food and macronutrient intake of elite Ethiopian distance runners. J. Int. Soc. Sports Nutr. 8:7. 10.1186/1550-2783-8-7
    1. Bergeron M. F., Bahr R., Bartsch P., Bourdon L., Calbet J. A., Carlsen K. H., et al. . (2012). International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br. J. Sports Med. 46, 770–779. 10.1136/bjsports-2012-091296
    1. Bøhn S. K., Myhrstad M. C., Thoresen M., Holden M., Karlsen A., Tunheim S. H., et al. . (2010). Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Med. 8:54. 10.1186/1741-7015-8-54
    1. Brooks G. A., Butterfield G. E., Wolfe R. R., Groves B. M., Mazzeo R. S., Sutton J. R., et al. . (1991). Increased dependence on blood glucose after acclimatization to 4,300 m. J. Appl. Physiol. 70, 919–927. 10.1152/jappl.1991.70.2.919
    1. Butterfield G. E. (1999). Nutrient requirements at high altitude. Clin. Sports Med. 18, 607–621, viii. 10.1016/S0278-5919(05)70171-X
    1. Butterfield G. E., Gates J., Fleming S., Brooks G. A., Sutton J. R., Reeves J. T. (1992). Increased energy intake minimizes weight loss in men at high altitude. J. Appl. Physiol. 72, 1741–1748. 10.1152/jappl.1992.72.5.1741
    1. Capling L., Beck K. L., Gifford J. A., Slater G., Flood V. M., O'Connor H. (2017). Validity of dietary assessment in athletes: a systematic review. Nutrients 9:1313. 10.3390/nu9121313
    1. Carlsen M. H., Andersen L. F., Dahl L., Norberg N., Hjartaker A. (2018). New iodine food composition database and updated calculations of iodine intake among norwegians. Nutrients 10:930. 10.3390/nu10070930
    1. Carlsen M. H., Halvorsen B. L., Holte K., Bohn S. K., Dragland S., Sampson L., et al. . (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 9:3. 10.1186/1475-2891-9-3
    1. Christensen D. L., Van Hall G., Hambraeus L. (2002). Food and macronutrient intake of male adolescent Kalenjin runners in Kenya. Br. J. Nutr. 88, 711–717. 10.1079/BJN2002728
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn. Hillsdale, MI: Lawrence Erlbaum.
    1. Deakin V., Kerr D., Boushey C. (2015). Measuring nutritional status of athletes: clinical and research perspectives, in Clinical Sports Nutrition, eds Burke L., Deakin V. (North Ryde, NSW: McGraw-Hill; ), 27–253.
    1. Debevec T. (2017). Hypoxia-related hormonal appetite modulation in humans during rest and exercise: mini review. Front. Physiol. 8:366. 10.3389/fphys.2017.00366
    1. Debevec T., Millet G. P., Pialoux V. (2017). Hypoxia-induced oxidative stress modulation with physical activity. Front. Physiol. 8:84. 10.3389/fphys.2017.00084
    1. Dosek A., Ohno H., Acs Z., Taylor A. W., Radak Z. (2007). High altitude and oxidative stress. Respir. Physiol. Neurobiol. 158, 128–131. 10.1016/j.resp.2007.03.013
    1. Fudge B. W., Westerterp K. R., Kiplamai F. K., Onywera V. O., Boit M. K., Kayser B., et al. . (2006). Evidence of negative energy balance using doubly labelled water in elite Kenyan endurance runners prior to competition. Br. J. Nutr. 95, 59–66. 10.1079/BJN20051608
    1. Garvican-Lewis L. A., Govus A. D., Peeling P., Abbiss C. R., Gore C. J. (2016a). Iron supplementation and altitude: decision making using a regression tree. J. Sports Sci. Med. 15, 204–205.
    1. Garvican-Lewis L. A., Sharpe K., Gore C. J. (2016b). Time for a new metric for hypoxic dose? J. Appl. Physiol. 121, 352–355. 10.1152/japplphysiol.00579.2015
    1. Garvican-Lewis L. A., Vuong V. L., Govus A. D., Peeling P., Jung G., Nemeth E., et al. . (2018). Intravenous iron does not augment the hemoglobin mass response to simulated hypoxia. Med. Sci. Sports Exerc. 50, 1669–1678. 10.1249/MSS.0000000000001608
    1. Gore C. J., Sharpe K., Garvican-Lewis L. A., Saunders P. U., Humberstone C. E., Robertson E. Y., et al. . (2013). Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br. J. Sports Med. 47(Suppl. 1):i31–i39. 10.1136/bjsports-2013-092840
    1. Govus A. D., Garvican-Lewis L. A., Abbiss C. R., Peeling P., Gore C. J. (2015). Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS ONE 10:e0135120. 10.1371/journal.pone.0135120
    1. Griffiths A., Shannon O. M., Matu J., King R., Deighton K., O'Hara J. P. (2019). The effects of environmental hypoxia on substrate utilisation during exercise: a meta-analysis. J. Int. Soc. Sports Nutr. 16:10 10.1186/s12970-019-0277-8
    1. Hall R., Peeling P., Nemeth E., Bergland D., McCluskey W. T. P., Stellingwerff T. (2019). Single versus split dose of iron optimizes hemoglobin mass gains at 2106 m altitude. Med. Sci. Sports Exerc. 51, 751–759. 10.1249/MSS.0000000000001847
    1. Heikura I. A., Burke L. M., Bergland D., Uusitalo A. L. T., Mero A. A., Stellingwerff T. (2018). Impact of energy availability, health, and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int. J. Sports Physiol. Perform. 13, 1090–1096. 10.1123/ijspp.2017-0547
    1. Impey S. G., Hearris M. A., Hammond K. M., Bartlett J. D., Louis J., Close G. L., et al. . (2018). Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 48, 1031–1048. 10.1007/s40279-018-0867-7
    1. Jenner S. L., Buckley G. L., Belski R., Devlin B. L., Forsyth A. K. (2019). Dietary intakes of professional and semi-professional team sport athletes do not meet sport nutrition recommendations-a systematic literature review. Nutrients 11:1160. 10.3390/nu11051160
    1. Karl J. P., Cole R. E., Berryman C. E., Finlayson G., Radcliffe P. N., Kominsky M. T., et al. . (2018). Appetite suppression and altered food preferences coincide with changes in appetite-mediating hormones during energy deficit at high altitude, but are not affected by protein intake. High Alt. Med. Biol. 19, 156–169. 10.1089/ham.2017.0155
    1. Kayser B. (1992). Nutrition and high altitude exposure. Int. J. Sports Med. 13(Suppl. 1), S129–S132. 10.1055/s-2007-1024616
    1. Koivisto A. E., Olsen T., Paur I., Paulsen G., Bastani N. E., Garthe I., et al. . (2019). Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. PLoS ONE 14:e0217895. 10.1371/journal.pone.0217895
    1. Koivisto A. E., Paulsen G., Paur I., Garthe I., Tonnessen E., Raastad T., et al. . (2018). Antioxidant-rich foods and response to altitude training: a randomized controlled trial in elite endurance athletes. Scand. J. Med. Sci. Sports 28, 1982–1995. 10.1111/sms.13212
    1. Larson-Meyer D. E., Woolf K., Burke L. (2018). Assessment of nutrient status in athletes and the need for supplementation. Int. J. Sport. Nutr. Exerc. Metab. 28, 139–158. 10.1123/ijsnem.2017-0338
    1. Lewis N. A., Howatson G., Morton K., Hill J., Pedlar C. R. (2015). Alterations in redox homeostasis in the elite endurance athlete. Sports Med. 45, 379–409. 10.1007/s40279-014-0276-5
    1. Magkos F., Yannakoulia M. (2003). Methodology of dietary assessment in athletes: concepts and pitfalls. Curr. Opin. Clin. Nutr. Metab. Care 6, 539–549. 10.1097/00075197-200309000-00007
    1. Maughan R. J., Burke L. M. (2012). Commission IOCMaS. Nutrition for Athletes - A Practical Guide to Eating for Health and Performance. 2nd Edn. Lausanne: IOC Medical Commission Working Group on Sports Nutrition.
    1. Mazzeo R. S. (2008). Physiological responses to exercise at altitude: an update. Sports Med. 38, 1–8. 10.2165/00007256-200838010-00001
    1. Merry T. L., Ristow M. (2016). Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. 594, 5135–5147. 10.1113/JP270654
    1. Michalczyk M., Czuba M., Zydek G., Zajac A., Langfort J. (2016). Dietary recommendations for cyclists during altitude training. Nutrients 8:377. 10.3390/nu8060377
    1. Milledge J. S. (1992). Salt and water control at altitude. Int. J. Sports Med. 13(Suppl. 1), S61–S63. 10.1055/s-2007-1024596
    1. Ministers NCo. (2012). Nordic Nutrition Recommendations. Integrating Nutrition and Physical Activity. Copenhagen. Available online at:
    1. Moran N. E., Mohn E. S., Hason N., Erdman J. W., Jr., Johnson E. J. (2018). Intrinsic and extrinsic factors impacting absorption, metabolism, and health effects of dietary carotenoids. Adv. Nutr. 9, 465–492. 10.1093/advances/nmy025
    1. Mountjoy M., Sundgot-Borgen J., Burke L., Ackerman K. E., Blauwet C., Constantini N., et al. . (2018). International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 28, 316–331. 10.1123/ijsnem.2018-0136
    1. Narici M. V., Kayser B. (1995). Hypertrophic response of human skeletal muscle to strength training in hypoxia and normoxia. Eur. J. Appl. Physiol. Occup. Physiol. 70, 213–219. 10.1007/BF00238566
    1. Neubauer O., Yfanti C. (2015). Antioxidants in Athlete's basic nutrition: considerations towards a guideline for the intake of vitamin C and vitamin E, in Antioxidants in Sport Nutrition, ed M. Lamprecht (Boca Raton, FL: CRC Press, Taylor & Francis Group; ). 39–66
    1. Palazzetti S., Rousseau A. S., Richard M. J., Favier A., Margaritis I. (2004). Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br. J. Nutr. 91, 91–100. 10.1079/BJN20031027
    1. Pialoux V., Mounier R., Rock E., Mazur A., Schmitt L., Richalet J. P., et al. . (2009). Effects of the 'live high-train low' method on prooxidant/antioxidant balance on elite athletes. Eur. J. Clin. Nutr. 63, 756–762. 10.1038/ejcn.2008.30
    1. Pingitore A., Lima G. P., Mastorci F., Quinones A., Iervasi G., Vassalle C. (2015). Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31, 916–922. 10.1016/j.nut.2015.02.005
    1. Rennie M. J., Babij P., Sutton J. R., Tonkins W. J., Read W. W., Ford C., et al. . (1983). Effects of acute hypoxia on forearm leucine metabolism. Prog. Clin. Biol. Res. 136, 317–323.
    1. Rizzoli R. (2014). Dairy products, yogurts, and bone health. Am. J. Clin. Nutr. 99(5 Suppl.), 1256S–1262S. 10.3945/ajcn.113.073056
    1. Rosenthal R., Rosnow R. L. (1984). Essentials of Behavioral Research: Methods and Data Analysis. New York, NY: McGraw-Hill.
    1. Sanz-Quinto S., Moya-Ramon M., Brizuela G., Rice I., Urban T., Lopez-Grueso R. (2019). Nutritional strategies in an elite wheelchair marathoner at 3900 m altitude: a case report. J. Int. Soc. Sports Nutr. 16:51. 10.1186/s12970-019-0321-8
    1. Siebenmann C., Robach P., Lundby C. (2017). Regulation of blood volume in lowlanders exposed to high altitude. J. Appl. Physiol. 123, 957–966. 10.1152/japplphysiol.00118.2017
    1. Sies H. (1997). Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291–295. 10.1113/expphysiol.1997.sp004024
    1. Solli G. S., Tonnessen E., Sandbakk O. (2017). The training characteristics of the world's most successful female cross-country skier. Front. Physiol. 8:1069. 10.3389/fphys.2017.01069
    1. Stellingwerff T., Peeling P., Garvican-Lewis L. A., Hall R., Koivisto A. E., Heikura I. A., et al. . (2019). Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: a narrative review. Sports Med. 49(Suppl. 2), 169–184. 10.1007/s40279-019-01159-w
    1. Stellingwerff T., Pyne D. B., Burke L. M. (2014). Nutrition considerations in special environments for aquatic sports. Int. J. Sport. Nutr. Exerc. Metab. 24, 470–479. 10.1123/ijsnem.2014-0014
    1. Thomas D. T., Erdman K. A., Burke L. M. (2016). American College of Sports Medicine Joint Position Statement. Nutrition and athletic performance. Med. Sci. Sports Exerc. 48, 543–568. 10.1249/MSS.0000000000000852
    1. Torris C., Smastuen M. C., Molin M. (2018). Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients 10:952. 10.3390/nu10070952
    1. Totland T. H., Melnæs B. K., Lundberg-Hallén N., Helland-Kigen K. M., Lund-Blix N. A., Myhre J. B., et al. (2012). Norkost 3: En landsomfattende kostholdsundersøkelse blant menn og kvinner i Norge i alderen 18-70 år, 2010-1 (A National Dietary Survey Among Males and Females in Norway, Aged 18-70 Years, 2010-11). Oslo: University of Oslo; Norwegian Food Safety Authority; Norwegian Directorate of Health.
    1. Wardenaar F., Brinkmans N., Ceelen I., Van Rooij B., Mensink M., Witkamp R., et al. . (2017a). Macronutrient intakes in 553 Dutch Elite and sub-elite endurance, team, and strength athletes: does intake differ between sport disciplines? Nutrients 9:119. 10.3390/nu9020119
    1. Wardenaar F., Brinkmans N., Ceelen I., Van Rooij B., Mensink M., Witkamp R., et al. . (2017b). Micronutrient intakes in 553 Dutch Elite and sub-elite athletes: prevalence of low and high intakes in users and non-users of nutritional supplements. Nutrients 9:142. 10.3390/nu9020142
    1. Wehrlin J. P., Zuest P., Hallen J., Marti B. (2006). Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J. Appl. Physiol. 100, 1938–1945. 10.1152/japplphysiol.01284.2005
    1. Westerterp K. R. (2018). Exercise, energy expenditure and energy balance, as measured with doubly labelled water. Proc. Nutr. Soc. 77, 4–10. 10.1017/S0029665117001148
    1. Westerterp K. R., Meijer E. P., Rubbens M., Robach P., Richalet J. P. (2000). Operation everest III: energy and water balance. Pflugers Arch. 439, 483–488. 10.1007/s004249900203
    1. Westerterp K. R., Saris W. H., van Es M., ten Hoor F. (1986). Use of the doubly labeled water technique in humans during heavy sustained exercise. J. Appl. Physiol. 61, 2162–2167. 10.1152/jappl.1986.61.6.2162
    1. Woods A. L., Garvican-Lewis L. A., Rice A., Thompson K. G. (2017a). 12 days of altitude exposure at 1800 m does not increase resting metabolic rate in elite rowers. Appl. Physiol. Nutr. Metab. 42, 672–676. 10.1139/apnm-2016-0693
    1. Woods A. L., Sharma A. P., Garvican-Lewis L. A., Saunders P. U., Rice A. J., Thompson K. G. (2017b). Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int. J. Sport Nutr. Exerc. Metab. 27, 83–90. 10.1123/ijsnem.2016-0116
    1. Young A. J., Margolis L. M., Pasiakos S. M. (2019). Commentary on the effects of hypoxia on energy substrate use during exercise. J. Int. Soc. Sports Nutr. 16:28. 10.1186/s12970-019-0295-6

Source: PubMed

3
Předplatit