Short-Term Water- and Land-Based Exercise Training Comparably Improve Exercise Capacity and Vascular Function in Patients After a Recent Coronary Event: A Pilot Randomized Controlled Trial

Danijela Vasić, Marko Novaković, Mojca Božič Mijovski, Breda Barbič Žagar, Borut Jug, Danijela Vasić, Marko Novaković, Mojca Božič Mijovski, Breda Barbič Žagar, Borut Jug

Abstract

Background: We hypothesized that a 2-week twice daily aquatic endurance plus calisthenics exercise training program: (i) increases aerobic exercise capacity (peak oxygen uptake/ V ˙ O2peak), (ii) improves endothelium-dependent flow-mediated vasodilation (FMD), and (iii) reduces circulating markers of low-grade inflammation and hemostasis, as compared to land-based endurance plus calisthenics exercise training or no exercise in patients undergoing short-term residential cardiac rehabilitation after a recent coronary artery disease (CAD) event.

Methods: Patients with a recent myocardial infarction or revascularization procedure were randomized into two interventional groups and a control group. The interventional groups underwent supervised aerobic endurance plus calisthenics exercise training either in thermo-neutral water or on land at moderate intensity (60-80% of the peak heart rate achieved during symptom-limited graded exercise testing) for 30 min twice daily for 2 weeks (i.e., 24 sessions). The control group was deferred from supervised exercise training for the 2-week duration of the intervention, but was advised low-to-moderate intensity physical activity at home while waiting. At baseline and after the intervention period, all participants underwent estimation of aerobic exercise capacity, brachial artery flow-mediated dilatation (FMD, measured ultrasonographically at rest and during reactive hyperemia after 4.5 min of forearm cuff inflation), markers of cardiac dysfunction (NT-proBNP), inflammation (hsCRP, IL-6, IL-8, IL-10), cell adhesion (ICAM, P-selectin), and hemostasis (fibrinogen, D-dimer).

Results: A total of 89 patients (mean age 59.9 ± 8.2 years, 77.5% males, V ˙ O2peak at baseline 14.8 ± 3.5 ml kg-1 min-1) completed the study. Both exercise modalities were safe (no significant adverse events recorded) and associated with a significant improvement in V ˙ O2peak as compared to controls: age and baseline V ˙ O2peak-adjusted end-of-study V ˙ O2peak increased to 16.7 (95% CI 16.0-17.4) ml kg-1 min-1 with land-based training (p < 0.001 for change from baseline) and to 18.6 (95% CI 17.9-19.3) ml kg-1 min-1 with water-based training (p < 0.001 for change from baseline), but not in controls (14.9 ml kg-1 min-1; 95% CI 14.2-15.6; p = 0.775 for change from baseline). FMD also increased in both intervention groups (from 5.5 to 8.8%, p < 0.001 with land-based, and from 7.2 to 9.2%, p < 0.001 with water-based training, respectively), as compared to controls (p for change 0.629). No significant changes were detected in biomarkers of inflammation, cell adhesion or hemostasis, whereas levels of NT-proBNP (marker of cardiac dysfunction) decreased in the water-based training group (p = 0.07 vs. controls).

Conclusion: Endurance plus calisthenics exercise training in thermo-neutral water is safe, and improves aerobic exercise capacity and vascular function in patients undergoing short-term residential cardiac rehabilitation after a recent CAD event.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT02831829.

Keywords: aquatic exercise; cardiac rehabilitation; coronary artery disease; exercise training; myocardial infarction.

Figures

FIGURE 1
FIGURE 1
Patient selection and study design flowchart.
FIGURE 2
FIGURE 2
Changes in aerobic exercise capacity (V˙O2peak) and flow-mediated dilatation (FMD) expressed on the logarithmic scale.

References

    1. Alkatan M., Machin D. R., Baker J. R. (2016). Effects of swimming and cycling exercise intervention on vascular function in patients with osteoarthritis. Am. J. Cardiol. 117 114–145. 10.1016/j.amjcard.2015.10.017
    1. Anderson L., Thompson D. R., Oldridge N., Zwisler A. D., Rees K., Martin N., et al. (2016). Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane systematic review and meta-analysis. JACC 67 1–12.
    1. Ayme K., Gavarry O., Rossi P., Desruelle A. V., Regnard J., Boussuges A. (2014). Effect of head-out water immersion on vascular function in healthy subjects. Appl. Physiol. Nutr. Metab. 39 425–431. 10.1139/apnm-2013-0153
    1. Balady G. J., Williams M. A., Ades P. A., Bittner V., Comoss P., Foody J. M., et al. (2007). Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the american heart association exercise, cardiac rehabilitation, and prevention committee, the council on clinical cardiology the councils o. Circulation 115 2675–2682. 10.1161/circulationaha.106.180945
    1. Bjarnason-Wehrens B., McGee H., Zwisler A. D., Piepoli M., Benzer W., Schmid J. P., et al. (2010). on behalf of the cardiac rehabilitation section European Association of Cardiovascular Prevention and Rehabilitation. Cardiac rehabilitation in Europe: results from the European Cardiac Rehabilitation Inventory Survey. Eur. J. Card. Prev. Rehab. 17 410–418. 10.1093/eurheartj/ehr178
    1. Bruning R. S., Sturek M. (2015). Benefits of exercise training in coronary artery disease patients. Prog. Cardiovasc. Dis. 57 443–453. 10.1016/j.pcad.2014.10.006
    1. Carvalho V. O., Mezzani A. (2010). Aerobic exercise training intensity in patients with chronic heart failure: principles of assessment and prescription. Eur. J. Cardiovasc. Prev. Rehab. 18 5–14. 10.1097/hjr.0b013e32833a9c63
    1. Casillas J. M., Gremeaux V., Damak S., Feki A., Pérennou D. (2007). Exercise training for patients with cardiovascular disease. Ann. Readapt. Med. Phys. 50 403–418.
    1. Choi J. H., Kim B. R., Joo S. J., Han E. Y., Kim S. Y., Kim S. M., et al. (2015). Comparison of cardiorespiratory responses during aquatic and land treadmill exercise in patients with coronary artery disease. J. Cardio. Rehabil. Prev. 35 140–146. 10.1097/HCR.0000000000000094
    1. Cider A., Schaufelberger H., Sunnerhagen K. S. (2003). Anderson B. Hydrotherapy – a new approach to improve function in the older patient with chronic heart failure. Eur. J. Heart Fail 5 527–535. 10.1016/s1388-9842(03)00048-5
    1. Conraads V. M., Pattyn N., De Maeyer C., Beckers P. J., Coeckelberghs E., Cornelissen V. A., et al. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX_CAD study. Int. J. Cardiol. 20 203–210. 10.1016/j.ijcard.2014.10.155
    1. Di Francescomarino S., Sciartilli A., Di Valerio V., Di Baldassarre A., Gallina S. (2009). The effect of physical exercise on endothelial function. Sports Med. 39 797–812. 10.2165/11317750-000000000-00000
    1. DiCarlo L. J., Sparling P. B., Millard-Stafford M. L., Rupp J. C. (1991). Peak heart rates during maximal running and swimming: implications for exercise presribtion. Int. J. Sports Med. 12 309–312. 10.1055/s-2007-1024687
    1. Flammer A. J., Anderson T., CElermajer D. S., Creager M. A., Deanfield J., Ganz P., et al. (2012). The assessment of endothelial function from research into clinical practice. Circulation 126 753–767.
    1. Gabrielsen A., Sørensen V. B., Pump B., Galatius S., Videbaek R., Bie P., et al. (2000). Cardiovascular and neuroendocrine responses to water immersion in compensated heart failure. Am. J. Physiol. Heart Circ. Physiol. 275 1931–1940.
    1. Graham D. A., Rush J. W. (2004). Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J. Appl. Physiol. 96 2088–2096. 10.1152/japplphysiol.01252.2003
    1. Hambrecht R., Adams V., Erbs S., Linke A., Krankel N., Shu Y., et al. (2003). Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107 3152–3231.
    1. Hambrecht R., Wolf A., Gielen S., Linke A., Hofer J., Erbs S., et al. (2000). Effect of exercise on coronary endothelial function in patients with coronary artery disease. N. Engl. J. Med. 342 454–460.
    1. Ismail H., McFarlane J. R., Nojoumian H., Dieberg G., Smart N. A. (2013). Cinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure. JACC 1 514–522. 10.1016/j.jchf.2013.08.006
    1. Kokkinos P., Myers J. (2010). Exercise and physical activity: clinical outcomes and applications. Circulation 122 1637–1648. 10.1161/circulationaha.110.948349
    1. Korzeniowska-Kubacka I., Biliñska M., Dobraszkiewicz-Wasilewska B., Baranowski R., Piotrowicz E., Piotrowicz R. (2016). The influence of water-based training on arrhythmia I patients with stable coronary artery disease and preserved left ventricular function. Cardiol. J. 23 93–99. 10.5603/CJ.a2015.0065
    1. Laurent M., Daline T., Malika B., Fawzi O., Philippe V., Benoit D., et al. (2009). Training-induced increase in nitric oxide metabolites in chronic heart failure and coronary artery disease: an extra benefit of water – based exercises? Eur. J. Cardiovasc. Prev. Rehabil. 16 215–221. 10.1097/HJR.0b013e3283292fcf
    1. Lazar J. M., Khanna N., Chesler R., Salciccioli L. (2013). Swimming and the heart. Int. J. Cardiol. 168 19–25.
    1. Lee J. Y., Joo K. C., Brubaker P. H. (2017). Aqua walking as an alternative exercise modality during cardiac rehabilitationfor coronary artery disease in older patients with lower extremity osteoarthritis. BMC Cardiovasc. Disord. 17:252. 10.1186/s12872-017-0681-4
    1. Mampuya W. M. (2012). Cardiac rehabilitation past, present and future: an overview. Cardiovasc. Diagn. Ther. 2 38–49. 10.3978/j.issn.2223-3652.2012.01.02
    1. Mann T., Lamberts R. P., Lambert I. (2013). Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 43 613–625. 10.1007/s40279-013-0045-x
    1. Menezes A. R., Lavie C. J., Milani R. V., Forman D. E., King M., Wiliams M. A. (2014). Cardiac rehabilitation in United States. Prog. Cardiovasc. Dis. 56 522–529.
    1. Meyer K. (2006). Left ventricular dysfunction and chronic heart failure: should aqua therapy and swimming be allowed? Br. J. Sports Med. 40 817–818. 10.1136/bjsm.2006.029165
    1. Mohammadi H. R., Khoshnam M. S., Khoshnam E. (2018). Effects of different modes of exercise training on body composition and risk factors for cardiovascular disease in middle-aged men. Int. J. Prev. Med. 9:9. 10.4103/ijpvm.IJPVM_209_16
    1. Mourot L., Teffaha D., Bouhaddi M., Ounissi F., Vernochet P., Dugue B., et al. (2010). Exercise rehablitation restores physiological cardiovascular responses to short-term head-out water immersion in patients with heart failure. J. Cardiopulm. Rehab. Prevent. 30 22–27. 10.1097/hcr.0b013e3181c8595c
    1. Nimmo M. A., Leggate M., Vianna J. L., King J. A. (2013). The effect of physical activity on mediators of inflammation. Diabet. Obes. Metab. 15(Suppl. 3), 51–60. 10.1111/dom.12156
    1. Nualnim N., Parkhurst K., Dhindsa M., Tarumi T., Vavrek J., Tanaka H. (2012). Effects of swimming training on blood pressure and vascular function in adults > 50 years of age. Am. J. Cardiol. 109 1005–1010. 10.1016/j.amjcard.2011.11.029
    1. Pedersen B. K. (2017). Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur. J. Clin. Invest. 47 600–611. 10.1111/eci.12781
    1. Pendergast D. R., Moon R. E., Krasney J. J., Held H. E., Zamparo P. (2015). Human physiology in an aquatic enviroment. Compr. Physiol. 5 1705–1750. 10.1002/cphy.c140018
    1. Piepoli M. F., Corra U., Benzer W., Bjarnason-Wehrens B., Dendale P., Gaita D., et al. (2010). Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 17 1–17. 10.1097/HJR.0b013e3283313592
    1. Schmid J. P., Morger C., Noveanu M., Binder R. K., Anderegg M., Saner H., et al. (2009). Haemodynamic and arrhythmic effects of moderately cold (22C) water immersion and swimming in patients with stable coronary artery disease and heart failure. Eur. J. Heart Fail. 11 903–909. 10.1093/eurjhf/hfp114
    1. Schmid J. P., Noveanu M., Morger C., Gaillet R., Capoferri M., Anderegg M., et al. (2007). Influence of water immersion, water gymnastics and swimming on cardiac output in patients with heart failure. Heart 93 722–727. 10.1136/hrt.2006.094870
    1. Shah P., Pellicori P., Macnamara A., Urbinati A., Clark A. L. (2017). Is swimming safe in heart failure? Syst. Rev. Cardiol. Rev. 25 321–325. 10.1097/CRD.0000000000000154
    1. Teffaha D., Maurot L., Vernochet P., Ounissi F., Regnard J., Monpère C., et al. (2011). Relevance of water gymnastics in rehabilitation programs in patients with chronic heart failure or coronary artery disease with normal left ventricular function. J. Cardiac. Fail. 17 676–683. 10.1016/j.cardfail.2011.04.008
    1. Tei C., Horikiri Y., Park J. C., Jeong J. W., Chang K. S., Toyama Y., et al. (1995). Acute hemodynamic improvement by thermal vasodilatation in congestive heart failure. Circuation 91 2582–2590. 10.1161/01.cir.91.10.2582
    1. Tinken T. M., Thijssen D. H. J., Black M. A., Cable N. T., Green D. J. (2008). Time course of change in vasodulatator function and capacity in response to exercise training in humans. J. Physiol. 586 5003–5012. 10.1113/jphysiol.2008.158014
    1. Tokmakidis S., Spassis A., Volaklis K. (2008). Training, detraining and retraining effects after a water-based exercise program in patients with coronary artery disease. Cardiology 111 257–264. 10.1159/000127737
    1. Volaklis K. A., Spassis A. T., Tokmadis S. P. (2007). Land versus water exercise in patients with coronary artey disease: effects on body composition, blood lipids and physical fitness. Am. Heart J. 154 560.e1–560.e6. 10.1016/j.ahj.2007.06.029
    1. Winzer E. B., Woitek F., Linke A. (2018). Physical activity in the prevention and treatment of coronary artery disease. J. Am. Heart Asoc. 7:e007725.
    1. Womack C. J., Nagelkirk P. R., Coughlin A. M. (2003). Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med. 33 795–807. 10.2165/00007256-200333110-00002

Source: PubMed

3
Předplatit