Case-Control Microbiome Study of Chronic Otitis Media with Effusion in Children Points at Streptococcus salivarius as a Pathobiont-Inhibiting Species

Jennifer Jörissen, Marianne F L van den Broek, Ilke De Boeck, Wannes Van Beeck, Stijn Wittouck, An Boudewyns, Paul Van de Heyning, Vedat Topsakal, Vincent Van Rompaey, Ine Wouters, Liesbet Van Heirstraeten, Pierre Van Damme, Surbi Malhotra-Kumar, Heidi Theeten, Olivier M Vanderveken, Sarah Lebeer, Jennifer Jörissen, Marianne F L van den Broek, Ilke De Boeck, Wannes Van Beeck, Stijn Wittouck, An Boudewyns, Paul Van de Heyning, Vedat Topsakal, Vincent Van Rompaey, Ine Wouters, Liesbet Van Heirstraeten, Pierre Van Damme, Surbi Malhotra-Kumar, Heidi Theeten, Olivier M Vanderveken, Sarah Lebeer

Abstract

Chronic otitis media with effusion (OME) has been associated with a shift in microbiome composition and microbial interaction in the upper respiratory tract (URT). While most studies have focused on potential pathogens, this study aimed to find bacteria that could be protective against OME through a case-control microbiome study and characterization of isolates from healthy subjects. The URT and ear microbiome profiles of 70 chronic OME patients and 53 controls were compared by 16S rRNA amplicon sequencing. Haemophilus influenzae was the most frequent classic middle ear pathobiont. However, other taxa, especially Alloiococcus otitis, were also frequently detected in the ear canal of OME patients. Streptococci of the salivarius group and Acinetobacter lwoffii were more abundant in the nasopharynx of healthy controls than in OME patients. In addition to the microbiome analysis, 142 taxa were isolated from healthy individuals, and 79 isolates of 13 different Streptococcus species were tested for their pathobiont-inhibiting potential. Of these, Streptococcus salivarius isolates showed a superior capacity to inhibit the growth of H. influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, A. otitis, and Corynebacterium otitidis S. salivarius strains thus show potential as a probiotic for prevention or treatment of OME based on their overrepresentation in the healthy nasopharynx and their ability to inhibit the growth of respiratory pathobionts. (This study has been registered at ClinicalTrials.gov under registration no. NCT03109496.)IMPORTANCE The majority of probiotics marketed today target gastrointestinal health. This study searched for bacteria native to the human upper respiratory tract, with a beneficial potential for respiratory and middle ear health. Comparison of the microbiomes of children with chronic otitis media with effusion (OME) and of healthy controls identified Streptococcus salivarius as a health-associated and prevalent inhabitant of the human nasopharynx. However, beneficial potential should be assessed at strain level. Here, we also isolated specific S. salivarius strains from the healthy individuals in our study. These isolates showed a beneficial safety profile and efficacy potential to inhibit OME pathogens in vitro These properties will now have to be evaluated and confirmed in human clinical studies.

Keywords: 16S rRNA; Streptococcus salivarius; ear canal; microbiome; middle ear; otitis media; otitis media with effusion; pediatric; probiotics; upper respiratory tract.

Copyright © 2021 Jörissen et al.

Figures

FIG 1
FIG 1
The bacterial microbiome of the human upper respiratory tract and ears. (A) Genus-level microbiome composition of multiple upper respiratory tract and ear niches in health (“H”) and during chronic otitis media with effusion (“D”). Each bar represents one sample, and the full height of a bar represents 100% of reads. The 11 most abundant genera across all samples are shown, with all other genera summarized under “Residual.” Health status is indicated by header bar color and letter, and the number of successfully sequenced samples per location and group is provided where possible. For the healthy adenoid swabs and healthy middle ear rinses, 1 and 4 samples were available for analysis, respectively. Adenoid swabs and tissue samples were grouped into one graph, as they did not differ significantly. Note that by “healthy,” we refer to the absence of inflammation and infection at the studied anatomical site. For the nasopharynx, children attending day care were included, in addition to cochlear implant recipients who were sampled as reference for the other anatomical sites. (B) Similarity (1 − Bray-Curtis dissimilarity) of middle ear effusion samples to matched nasopharynx versus side-matched ear canal samples. A high score indicates high similarity between two locations. Symbols are sized based on the number of reads remaining in the middle ear sample after contaminant filtering. Colors indicate which ASV is dominant (>50% relative abundance) in the middle ear. (C) Stacked bar charts of healthy middle ear samples. Only ASVs detected in more than one sample are shown.
FIG 2
FIG 2
ASVs significantly differentially abundant in the nasopharynx of chronic OME (“D”) versus controls (“H”) by Analysis of Composition of Microbiomes (ANCOM) analysis with stringent correction for multiple testing (see Fig. S1 in the supplemental material for an alternative analysis approach).
FIG 3
FIG 3
Mean inhibition of classic otopathogens by Streptococcus species isolated from the URT of healthy children and adults, as measured through the spot assay method. Each point represents a different isolate.
FIG 4
FIG 4
Inhibition of upper respiratory tract and classic and suspected otopathogens by 7 S. salivarius isolates, as measured through the spot assay method. Isolates were compared to S. salivarius 24SMB and S. oralis 89a, isolated from the Rinogermina probiotic nasal spray, and Hextril mouthwash (0.1% hexetidine) served as a positive control. For each pathobiont, the tested isolates are sorted from smallest (left) to largest (right) mean inhibition zone diameter. Statistical comparison of inhibition zones was performed with 0.1% hexetidine as a reference. ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
FIG 5
FIG 5
Adhesion of bacterial isolates to respiratory epithelial cells (Calu-3). The adhesion of Streptococcus salivarius (Ssal) isolates obtained in the present study was statistically compared to that of S. salivarius 24SMB (38–40) of the Rinogermina probiotic nasal spray using an unpaired Wilcoxon rank sum test. S. oralis (Soral) 89a was also isolated from Rinogermina, but it showed a lower adhesion capability than all S. salivarius strains. Lacticaseibacillus casei (Lcas) AMBR2 and Lacticaseibacillus rhamnosus (Lrham) GG were included as examples of lactobacilli with a higher and a lower ability to adhere to respiratory epithelium, respectively (64). Isolates are sorted from lowest to highest median adhesion percentage. ns, P > 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. P values are adjusted by the Holm method.

References

    1. Schilder AGM, Chonmaitree T, Cripps AW, Rosenfeld RM, Casselbrant ML, Haggard MP, Venekamp RP. 2016. Otitis media. Nat Rev Dis Primer 2:16063. doi:10.1038/nrdp.2016.63.
    1. Djurhuus BD, Skytthe A, Christensen K, Faber CE. 2014. Increasing rate of middle ear ventilation tube insertion in children in Denmark. Int J Pediatr Otorhinolaryngol 78:1541–1544. doi:10.1016/j.ijporl.2014.06.034.
    1. Ngo CC, Massa HM, Thornton RB, Cripps AW. 2016. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PLoS One 11:e0150949. doi:10.1371/journal.pone.0150949.
    1. Baek I, Kim M, Lee I, Na S-I, Goodfellow M, Chun J. 2018. Phylogeny trumps chemotaxonomy: a case study involving Turicella otitidis. Front Microbiol 9:834. doi:10.3389/fmicb.2018.00834.
    1. Liu CM, Cosetti MK, Aziz M, Buchhagen JL, Contente-Cuomo YL, Price LB, Keim PS, Lalwani AK. 2011. The otologic microbiome: a study of the bacterial microbiota in a pediatric patient with chronic serous otitis media using 16SrRNA gene-based pyrosequencing. Arch Otolaryngol Head Neck Surg 137:664–668. doi:10.1001/archoto.2011.116.
    1. Jervis-Bardy J, Rogers GB, Morris PS, Smith-Vaughan HC, Nosworthy E, Leong LEX, Smith RJ, Weyrich LS, De Haan J, Carney AS, Leach AJ, O’Leary S, Marsh RL. 2015. The microbiome of otitis media with effusion in Indigenous Australian children. Int J Pediatr Otorhinolaryngol 79:1548–1555. doi:10.1016/j.ijporl.2015.07.013.
    1. Chan CL, Wabnitz D, Jervis-Bardy J, Bassiouni A, Wormald P-J, Vreugde S, Psaltis AJ. 2016. The microbiome of otitis media with effusion. The Laryngoscope 126:2844–2851. doi:10.1002/lary.26128.
    1. Chan CL, Wabnitz D, Bassiouni A, Wormald P-J, Vreugde S, Psaltis AJ. 2017. Identification of the bacterial reservoirs for the middle ear using phylogenic analysis. JAMA Otolaryngol Head Neck Surg 143:155–161. doi:10.1001/jamaoto.2016.3105.
    1. Krueger A, Val S, Pérez-Losada M, Panchapakesan K, Devaney J, Duah V, DeMason C, Poley M, Rose M, Preciado D. 2017. Relationship of the middle ear effusion microbiome to secretory mucin production in pediatric patients with chronic otitis media. Pediatr Infect Dis J 36:635–640. doi:10.1097/INF.0000000000001493.
    1. Boers SA, de Zeeuw M, Jansen R, van der Schroeff MP, van Rossum AMC, Hays JP, Verhaegh SJC. 2018. Characterization of the nasopharyngeal and middle ear microbiota in gastroesophageal reflux-prone versus gastroesophageal reflux non-prone children. Eur J Clin Microbiol Infect Dis 37:851–857. doi:10.1007/s10096-017-3178-2.
    1. Val S, Poley M, Anna K, Nino G, Brown K, Pérez-Losada M, Gordish-Dressman H, Preciado D. 2018. Characterization of mucoid and serous middle ear effusions from patients with chronic otitis media: implication of different biological mechanisms? Pediatr Res 84:296–305. doi:10.1038/s41390-018-0060-6.
    1. Ari O, Karabudak S, Kalcioglu MT, Gunduz AY, Durmaz R. 2019. The bacteriome of otitis media with effusion: does it originate from the adenoid? Int J Pediatr Otorhinolaryngol 126. doi:10.1016/j.ijporl.2019.109624.
    1. Johnston J, Hoggard M, Biswas K, Astudillo-García C, Radcliff FJ, Mahadevan M, Douglas RG. 2019. Pathogen reservoir hypothesis investigated by analyses of the adenotonsillar and middle ear microbiota. Int J Pediatr Otorhinolaryngol 118:103–109. doi:10.1016/j.ijporl.2018.12.030.
    1. Kolbe AR, Castro-Nallar E, Preciado D, Pérez-Losada M. 2019. Altered middle ear microbiome in children with chronic otitis media with effusion and respiratory illnesses. Front Cell Infect Microbiol 9:339. doi:10.3389/fcimb.2019.00339.
    1. Xu J, Dai W, Liang Q, Ren D. 2020. The microbiomes of adenoid and middle ear in children with otitis media with effusion and hypertrophy from a tertiary hospital in China. Int J Pediatr Otorhinolaryngol 134:110058. doi:10.1016/j.ijporl.2020.110058.
    1. Enoksson F, Rodriguez AR, Peno C, Lopez CB, Tjernström F, Bogaert D, Hakansson AP, Bergenfelz C. 2020. Niche- and gender-dependent immune reactions in relation to the microbiota profile in pediatric patients with otitis media with effusion. Infect Immun 88:19. doi:10.1128/IAI.00147-20.
    1. Stroman DW, Roland PS, Dohar J, Burt W. 2001. Microbiology of normal external auditory canal. Laryngoscope 111:2054–2059. doi:10.1097/00005537-200111000-00035.
    1. Frank DN, Spiegelman GB, Davis W, Wagner E, Lyons E, Pace NR. 2003. Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol 41:295–303. doi:10.1128/jcm.41.1.295-303.2003.
    1. De Boeck I, Wittouck S, Wuyts S, Oerlemans EFM, van den Broek MFL, Vandenheuvel D, Vanderveken O, Lebeer S. 2017. Comparing the healthy nose and nasopharynx microbiota reveals continuity as well as niche-specificity. Front Microbiol 8:2372. doi:10.3389/fmicb.2017.02372.
    1. Kim D, Zeng MY, Núñez G. 2017. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 49:e339. doi:10.1038/emm.2017.24.
    1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. doi:10.1038/nrgastro.2014.66.
    1. van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. 2019. Translating recent microbiome insights in otitis media into probiotic strategies. Clin Microbiol Rev 32:e00010-18. doi:10.1128/CMR.00010-18.
    1. Roos K, Holm SE, Grahn E, Lind L. 1993. Alpha-streptococci as supplementary treatment of recurrent streptococcal tonsillitis: a randomized placebo-controlled study. Scand J Infect Dis 25:31–35. doi:10.1080/00365549309169666.
    1. Roos K, Grahn E, Holm SE, Johansson H, Lind L. 1993. Interfering α-streptococci as a protection against recurrent streptococcal tonsillitis in children. Int J Pediatr Otorhinolaryngol 25:141–148. doi:10.1016/0165-5876(93)90047-7.
    1. Könönen E, Jousimies-Somer H, Bryk A, Kilpi T, Kilian M. 2002. Establishment of streptococci in the upper respiratory tract: longitudinal changes in the mouth and nasopharynx up to 2 years of age. J Med Microbiol 51:723–730. doi:10.1099/0022-1317-51-9-723.
    1. Roos K, Håkansson EG, Holm S. 2001. Effect of recolonisation with “interfering” α streptococci on recurrences of acute and secretory otitis media in children: randomised placebo controlled trial. BMJ 322:210–210. doi:10.1136/bmj.322.7280.210.
    1. Tano K, Grahn Håkansson E, Holm SE, Hellström S. 2002. A nasal spray with alpha-haemolytic streptococci as long term prophylaxis against recurrent otitis media. Int J Pediatr Otorhinolaryngol 62:17–23. doi:10.1016/s0165-5876(01)00581-x.
    1. Skovbjerg S, Roos K, Holm SE, Grahn Hakansson E, Nowrouzian F, Ivarsson M, Adlerberth I, Wold AE. 2008. Spray bacteriotherapy decreases middle ear fluid in children with secretory otitis media. Arch Dis Child 94:92–98. doi:10.1136/adc.2008.137414.
    1. Cárdenas N, Martín V, Arroyo R, López M, Carrera M, Badiola C, Jiménez E, Rodríguez JM. 2019. Prevention of recurrent acute otitis media in children through the use of Lactobacillus salivarius PS7, a target-specific probiotic strain. Nutrients 11:376. doi:10.3390/nu11020376.
    1. Burton JP, Drummond BK, Chilcott CN, Tagg JR, Thomson WM, Hale JDF, Wescombe PA. 2013. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol 62:875–884. doi:10.1099/jmm.0.056663-0.
    1. Passali D, Passali GC, Vesperini E, Cocca S, Visconti IC, Ralli M, Bellussi LM. 2019. The efficacy and tolerability of Streptococcus salivarius 24SMB and Streptococcus oralis 89a administered as nasal spray in the treatment of recurrent upper respiratory tract infections in children. Eur Rev Med Pharmacol Sci 23:67–72. doi:10.26355/eurrev_201903_17352.
    1. Di Pierro F, Donato G, Fomia F, Adami T, Careddu D, Cassandro C, Albera R. 2012. Preliminary pediatric clinical evaluation of the oral probiotic Streptococcus salivarius K12 in preventing recurrent pharyngitis and/or tonsillitis caused by Streptococcus pyogenes and recurrent acute otitis media. Int J Gen Med 5:991–997. doi:10.2147/IJGM.S38859.
    1. Di Pierro F, Di Pasquale D, Di Cicco M. 2015. Oral use of Streptococcus salivarius K12 in children with secretory otitis media: preliminary results of a pilot, uncontrolled study. Int J Gen Med 8:303–308. doi:10.2147/IJGM.S92488.
    1. Di Pierro F, Colombo M, Zanvit A, Rottoli AS. 2016. Positive clinical outcomes derived from using Streptococcus salivarius K12 to prevent streptococcal pharyngotonsillitis in children: a pilot investigation. Drug Healthc Patient Saf 8:77–81. doi:10.2147/DHPS.S117214.
    1. Di Pierro F, Colombo M, Giuliani MG, Danza ML, Basile I, Bollani T, Conti AM, Zanvit A, Rottoli AS. 2016. Effect of administration of Streptococcus salivarius K12 on the occurrence of streptococcal pharyngo-tonsillitis, scarlet fever and acute otitis media in 3 years old children. Eur Rev Med Pharmacol Sci 20:4601–4606.
    1. Di Pierro F, Risso P, Poggi E, Timitilli A, Bolloli S, Bruno M, Caneva E, Campus R, Giannattasio A. 2018. Use of Streptococcus salivarius K12 to reduce the incidence of pharyngo-tonsillitis and acute otitis media in children: a retrospective analysis in not-recurrent pediatric subjects. Minerva Pediatr 70:240–245.
    1. Gregori G, Righi O, Risso P, Boiardi G, Demuru G, Ferzetti A, Galli A, Ghisoni M, Lenzini S, Marenghi C, Mura C, Sacchetti R, Suzzani L. 2016. Reduction of group A beta-hemolytic Streptococcus pharyngo-tonsillar infections associated with use of the oral probiotic Streptococcus salivarius K12: a retrospective observational study. Ther Clin Risk Manag 12:87–92.
    1. Marchisio P, Santagati M, Scillato M, Baggi E, Fattizzo M, Rosazza C, Stefani S, Esposito S, Principi N. 2015. Streptococcus salivarius 24SMB administered by nasal spray for the prevention of acute otitis media in otitis-prone children. Eur J Clin Microbiol Infect Dis 34:2377–2383. doi:10.1007/s10096-015-2491-x.
    1. La Mantia I, Varricchio A, Ciprandi G. 2017. Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for preventing recurrent acute otitis media in children: a real-life clinical experience. Int J Gen Med 10:171–175. doi:10.2147/IJGM.S137614.
    1. Cantarutti A, Rea F, Donà D, Cantarutti L, Passarella A, Scamarcia A, Lundin R, Damiani V, Giaquinto C, Corrao G. 2020. Preventing recurrent acute otitis media with Streptococcus salivarius 24SMB and Streptococcus oralis 89a five months intermittent treatment: an observational prospective cohort study. Int J Pediatr Otorhinolaryngol 132:109921. doi:10.1016/j.ijporl.2020.109921.
    1. La Mantia I, Varricchio A, Di Girolamo S, Minni A, Passali GC, Ciprandi G. 2019. The role of bacteriotherapy in the prevention of adenoidectomy. Eur Rev Med Pharmacol Sci 23:44–47.
    1. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. 2015. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 26:27663. doi:10.3402/mehd.v26.27663.
    1. Sprunt K, Leidy G. 1988. The use of bacterial interference to prevent infection. Can J Microbiol 34:332–338. doi:10.1139/m88-061.
    1. Roos K, Holm SE, Grahn-Håkansson E, Lagergren L. 1996. Recolonization with selected α-streptococci for prophylaxis of recurrent streptococcal pharyngotonsillitis—a randomized placebo-controlled multicentre study. Scand J Infect Dis 28:459–462. doi:10.3109/00365549609037940.
    1. Falck G, Grahn-Håkansson E, Holm SE, Roos K, Lagergren L. 1999. Tolerance and efficacy of interfering alpha-streptococci in recurrence of streptococcal pharyngotonsillitis: a placebo-controlled study. Acta Otolaryngol (Stockh) 119:944–948.
    1. De Boeck I, Wittouck S, Martens K, Claes J, Jorissen M, Steelant B, van den Broek MFL, Seys SF, Hellings PW, Vanderveken OM, Lebeer S. 2019. Anterior nares diversity and pathobionts represent sinus microbiome in chronic rhinosinusitis. mSphere 4:e00532-19. doi:10.1128/mSphere.00532-19.
    1. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. doi:10.1093/nar/gkz310.
    1. de Jong A, van Hijum SAFT, Bijlsma JJE, Kok J, Kuipers OP. 2006. BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res 34:W273–W279. doi:10.1093/nar/gkl237.
    1. Campelo AB, Roces C, Mohedano ML, López P, Rodríguez A, Martínez B. 2014. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb Cell Fact 13:77. doi:10.1186/1475-2859-13-77.
    1. Geng M, Austin F, Shin R, Smith L. 2017. Covalent structure and bioactivity of the type aii lantibiotic salivaricin A2. Appl Environ Microbiol 84:e02528-17. doi:10.1128/AEM.02528-17.
    1. Barbour A, Philip K, Muniandy S. 2013. Enhanced production, purification, characterization and mechanism of action of salivaricin 9 lantibiotic produced by Streptococcus salivarius NU10. PLoS One 8:e77751. doi:10.1371/journal.pone.0077751.
    1. Hynes WL, Friend VL, Ferretti JJ. 1994. Duplication of the lantibiotic structural gene in M-type 49 group A Streptococcus strains producing streptococcin A-M49. Appl Environ Microbiol 60:4207–4209. doi:10.1128/AEM.60.11.4207-4209.1994.
    1. Papadelli M, Karsioti A, Anastasiou R, Georgalaki M, Tsakalidou E. 2007. Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus. FEMS Microbiol Lett 272:75–82. doi:10.1111/j.1574-6968.2007.00740.x.
    1. Metelev M, Tietz JI, Melby JO, Blair PM, Zhu L, Livnat I, Severinov K, Mitchell DA. 2015. Structure, bioactivity, and resistance mechanism of streptomonomicin, an unusual lasso peptide from an understudied halophilic actinomycete. Chem Biol 22:241–250. doi:10.1016/j.chembiol.2014.11.017.
    1. Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, Bories G, Chesson A, Cocconcelli PS, Flachowsky G, Gropp J, Kolar B, Kouba M, López-Alonso M, López Puente S, Mantovani A, Mayo B, Ramos F, Saarela M, Villa RE, Wallace RJ, Wester P, Glandorf B, Herman L, Kärenlampi S, Aguilera J, Anguita M, Brozzi R, Galobart J, EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). 2018. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J 16:e05206. doi:10.2903/j.efsa.2018.5206.
    1. Stadler C, Teuber M. 2002. The macrolide efflux genetic assembly of Streptococcus pneumoniae is present in erythromycin-resistant Streptococcus salivarius. Antimicrob Agents Chemother 46:3690–3691. doi:10.1128/aac.46.11.3690-3691.2002.
    1. Chaffanel F, Charron-Bourgoin F, Libante V, Leblond-Bourget N, Payot S. 2015. Resistance genes and genetic elements associated with antibiotic resistance in clinical and commensal isolates of Streptococcus salivarius. Appl Environ Microbiol 81:4155–4163. doi:10.1128/AEM.00415-15.
    1. Varaldo PE, Montanari MP, Giovanetti E. 2009. Genetic elements responsible for erythromycin resistance in streptococci. Antimicrob Agents Chemother 53:343–353. doi:10.1128/AAC.00781-08.
    1. Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764. doi:10.1128/MMBR.00017-08.
    1. Ashbaugh CD, Alberti S, Wessels MR. 1998. Molecular analysis of the capsule gene region of group A Streptococcus: the hasAB genes are sufficient for capsule expression. J Bacteriol 180:4955–4959. doi:10.1128/JB.180.18.4955-4959.1998.
    1. Kelstrup J. 1981. Extracellular polysaccharides of smooth and rough variants of Streptococcus salivarius. Scand J Dent Res 89:374–383. doi:10.1111/j.1600-0722.1981.tb01696.x.
    1. Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR. 2018. Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr Opin Biotechnol 49:207–216. doi:10.1016/j.copbio.2017.09.007.
    1. Spacova I, O’Neill C, Lebeer S. 2020. Lacticaseibacillus rhamnosus GG inhibits infection of human keratinocytes by Staphylococcus aureus through mechanisms involving cell surface molecules and pH reduction. Benef Microbes 11:703–715. doi:10.3920/BM2020.0075.
    1. De Boeck I, van den Broek MFL, Allonsius CN, Spacova I, Wittouck S, Martens K, Wuyts S, Cauwenberghs E, Jokicevic K, Vandenheuvel D, Eilers T, Lemarcq M, De Rudder C, Thys S, Timmermans J-P, Vroegop AV, Verplaetse A, Van de Wiele T, Kiekens F, Hellings PW, Vanderveken OM, Lebeer S. 2020. Lactobacilli have a niche in the human nose. Cell Rep 31:107674. doi:10.1016/j.celrep.2020.107674.
    1. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJC, Yoo HS, Zhang C, Zhang Y, Sobral BW. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42:D581–D591. doi:10.1093/nar/gkt1099.
    1. Taboada B, Estrada K, Ciria R, Merino E. 2018. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34:4118–4120. doi:10.1093/bioinformatics/bty496.
    1. Leon‐Kempis MDR, Guccione E, Mulholland F, Williamson MP, Kelly DJ. 2006. The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol 60:1262–1275. doi:10.1111/j.1365-2958.2006.05168.x.
    1. Chaffanel F, Charron-Bourgoin F, Soligot C, Kebouchi M, Bertin S, Payot S, Le Roux Y, Leblond-Bourget N. 2018. Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol 102:2851–2865. doi:10.1007/s00253-018-8794-y.
    1. Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou M-Y, Renault P, Doré J, Briandet R, Serror P, Guédon E. 2017. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium, Streptococcus salivarius: serine-rich repeat glycoproteins of S. salivarius. Environ Microbiol 19:3579–3594. doi:10.1111/1462-2920.13853.
    1. Lappan R, Imbrogno K, Sikazwe C, Anderson D, Mok D, Coates H, Vijayasekaran S, Bumbak P, Blyth CC, Jamieson SE, Peacock CS. 2018. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol 18. doi:10.1186/s12866-018-1154-3.
    1. Jervis-Bardy J, Leong LEX, Papanicolas LE, Ivey KL, Chawla S, Woods CM, Frauenfelder C, Ooi EH, Rogers GB. 2019. Examining the evidence for an adult healthy middle ear microbiome. mSphere 4:e00456-19. doi:10.1128/mSphere.00456-19.
    1. Nemec A, Radolfová-Křížová L, Maixnerová M, Nemec M, Clermont D, Bzdil J, Ježek P, Španělová P. 2019. Revising the taxonomy of the Acinetobacter lwoffii group: the description of Acinetobacter pseudolwoffii sp. nov. and emended description of Acinetobacter lwoffii. Syst Appl Microbiol 42:159–167. doi:10.1016/j.syapm.2018.10.004.
    1. Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blümer N, von Mutius E, Bufe A, Gatermann S, Renz H, Holst O, Heine H. 2007. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol 119:1514–1521. doi:10.1016/j.jaci.2007.03.023.
    1. Cheng X, Sheng H, Ma R, Gao Z, Han Z, Chi F, Cong N, Wang J, Liu X, Luo X, Yu J, Ra Y. 2017. Allergic rhinitis and allergy are risk factors for otitis media with effusion: a meta-analysis. Allergol Immunopathol (Madr) 45:25–32. doi:10.1016/j.aller.2016.03.004.
    1. Tos M, Caye-Thomasen P. 2002. Mucous glands in the middle ear—what is known and what is not. ORL J Otorhinolaryngol Relat Spec 64:86–94. doi:10.1159/000057786.
    1. Delorme C. 2008. Safety assessment of dairy microorganisms: Streptococcus thermophilus. Int J Food Microbiol 126:274–277. doi:10.1016/j.ijfoodmicro.2007.08.014.
    1. Delorme C, Poyart C, Ehrlich SD, Renault P. 2007. Extent of horizontal gene transfer in evolution of streptococci of the salivarius group. J Bacteriol 189:1330–1341. doi:10.1128/JB.01058-06.
    1. Walker RE, Walker CG, Camargo CA, Bartley J, Flint D, Thompson JMD, Mitchell EA. 2019. Nasal microbial composition and chronic otitis media with effusion: a case-control study. PLoS One 14:e0212473. doi:10.1371/journal.pone.0212473.
    1. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8.
    1. Zupancic K, Kriksic V, Kovacevic I, Kovacevic D. 2017. Influence of oral probiotic Streptococcus salivarius K12 on ear and oral cavity health in humans: systematic review. Probiotics Antimicrob Proteins 9:102–110. doi:10.1007/s12602-017-9261-2.
    1. Chanos P, Mygind T. 2016. Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 100:4297–4308. doi:10.1007/s00253-016-7486-8.
    1. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C, Horvath P, Boyaval P, Hols P. 2010. A Novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444–1454. doi:10.1128/JB.01251-09.
    1. Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J, Coenye T, Hols P. 2018. Circuitry rewiring directly couples competence to predation in the gut dweller Streptococcus salivarius. Cell Rep 22:1627–1638. doi:10.1016/j.celrep.2018.01.055.
    1. Wouters I, Desmet S, Van Heirstraeten L, Blaizot S, Verhaegen J, Van Damme P, Malhotra-Kumar S, Theeten H, NPcarriage Study Group. 2019. Follow-up of serotype distribution and antimicrobial susceptibility of Streptococcus pneumoniae in child carriage after a PCV13-to-PCV10 vaccine switch in Belgium. Vaccine 37:1080–1086. doi:10.1016/j.vaccine.2018.12.068.
    1. Kassambara A. 2018. ggpubr: “ggplot2” based publication ready plots.
    1. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi:10.1099/ijsem.0.001755.
    1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869.
    1. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan: community ecology package.
    1. Lane DJ. 1991. 16S/23S rRNA sequencing, p 115–175. In Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, NY.
    1. Turner S, Pryer KM, Miao VPW, Palmer JD. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338. doi:10.1111/j.1550-7408.1999.tb04612.x.
    1. Alimolaei M, Golchin M. 2017. A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei. Biologicals 45:47–51. doi:10.1016/j.biologicals.2016.10.001.
    1. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi:10.1101/gr.186072.114.
    1. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153.
    1. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261.
    1. Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 44:D694–D697. doi:10.1093/nar/gkv1239.
    1. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. doi:10.1093/nar/gkn201.
    1. van den Broek MFL, De Boeck I, Claes IJJ, Nizet V, Lebeer S. 2018. Multifactorial inhibition of lactobacilli against the respiratory tract pathogen Moraxella catarrhalis. Benef Microbes 9:429–439. doi:10.3920/BM2017.0101.
    1. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL. 2001. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457. doi:10.1038/35106587.
    1. Lebeer S, Claes I, Tytgat HLP, Verhoeven TLA, Marien E, von Ossowski I, Reunanen J, Palva A, de Vos WM, De Keersmaecker SCJ, Vanderleyden J. 2012. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78:185–193. doi:10.1128/AEM.06192-11.
    1. Santagati M, Scillato M, Stefani S. 2018. Genetic organization of Streptococcus salivarius 24SMBc blp-like bacteriocin locus. Front Biosci (Schol Ed) 10:238–247. doi:10.2741/s512.
    1. Dawid S, Roche AM, Weiser JN. 2007. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect Immun 75:443–451. doi:10.1128/IAI.01775-05.

Source: PubMed

3
Předplatit