Significant Decrease in Hippocampus and Amygdala Mean Diffusivity in Treatment-Resistant Depression Patients Who Respond to Electroconvulsive Therapy

Antoine Yrondi, Federico Nemmi, Sophie Billoux, Aurélie Giron, Marie Sporer, Simon Taib, Juliette Salles, Damien Pierre, Claire Thalamas, Laurent Schmitt, Patrice Péran, Christophe Arbus, Antoine Yrondi, Federico Nemmi, Sophie Billoux, Aurélie Giron, Marie Sporer, Simon Taib, Juliette Salles, Damien Pierre, Claire Thalamas, Laurent Schmitt, Patrice Péran, Christophe Arbus

Abstract

Introduction: The hippocampus plays a key role in depressive disorder, and the amygdala is involved in depressive disorder through the key role that it plays in emotional regulation. Electroconvulsive therapy (ECT) may alter the microstructure of these two regions. Since mean diffusivity (MD), is known to be an indirect marker of microstructural integrity and can be derived from diffusion tensor imaging (DTI) scans, we aim to test the hypothesis that treatment-resistant depression (TRD) patients undergoing bilateral (BL) ECT exhibit a decrease of MD in their hippocampus and amygdala. Methods: Patients, between 50 and 70 years of age, diagnosed with TRD were recruited from the University Hospital of Toulouse and assessed clinically (Hamilton Depression Rating Scale, HAM-D) and by DTI scans at three time points: baseline, V2 (during treatment), and V3 within 1 week of completing ECT. Results: We included 15 patients, who were all responders. The left and right hippocampi and the left amygdala showed a significant decrease in MD at V3, compared to baseline [respectively: β = -2.78, t = -1.97, p = 0.04; β = -2.56, t = -2, p = 0.04; β = -2.5, t = -2.3, p = 0.04, false discovery rate (FDR) corrected]. MD did not decrease in the right amygdala. Only the left amygdala was significantly associated with a reduction in HAM-D (ρ = 0.55, p = 0.049, FDR corrected). Conclusion: MD is an indirect microstructural integrity marker, which decreases in the hippocampus and the left amygdala, during BL ECT in TRD populations. This could be interpreted as a normalization of microstructural integrity in these structures.

Keywords: DTI; MRI; depressive disorder; electroconvulsive therapy; mean diffusivity.

Copyright © 2019 Yrondi, Nemmi, Billoux, Giron, Sporer, Taib, Salles, Pierre, Thalamas, Schmitt, Péran and Arbus.

Figures

Figure 1
Figure 1
Single subjects measures and trajectories (in black) and group average and 95% CI (in blue) for V1, V2 and V3. In the left and right hippocampus, and the left amydala, the average MD was significantly lower at V3 than V1 (p = 0.4). Note that MD has been scaled by multiplying its original value by 1000.

References

    1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry (2005) 62:593–602. 10.1001/archpsyc.62.6.593
    1. Greden JF. The burden of disease for treatment-resistant depression. J Clin Psy. (2001) 62 Suppl 16:26–31.
    1. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry (2006) 163:1905–17. 10.1176/ajp.2006.163.11.1905
    1. Berlim MT, Turecki G. Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can J Psychiatry (2007) 52:46–54. 10.1177/070674370705200108
    1. Olsen LR, Mortensen EL, Bech P. Prevalence of major depression and stress indicators in the Danish general population. Acta Psychiatr Scand (2004) 109:96–103. 10.1046/j.0001-690X.2003.00231.x
    1. Fava M, Davidson KG. Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am (1996) 19:179–200. 10.1016/S0193-953X(05)70283-5
    1. Malhi GS, Parker GB, Crawford J, Wilhelm K, Mitchell PB. Treatment-resistant depression: resistant to definition? Acta Psychiatr Scand (2005) 112:302–9. 10.1111/j.1600-0447.2005.00602.x
    1. El-Hage W, Leman S, Camus V, Belzung C. Mechanisms of antidepressant resistance. Front Pharmacol (2013) 4:146. 10.3389/fphar.2013.00146
    1. Fink M, Taylor MA. Electroconvulsive therapy: evidence and challenges. JAMA (2007) 298:330–2. 10.1001/jama.298.3.330
    1. Fosse R, Read J. Electroconvulsive treatment: hypotheses about mechanisms of action. Front Psychiatry (2013) 4(94):1–10. 10.3389/fpsyt.2013.00094
    1. Rudorfer M, Henry ME, Sackeim HA. Electroconvulsive therapy. In: Tasman A, Kay J, Lieberman JA, editors. Psychiatry, 2nd Edn. Chichester: John Wiley & Sons, Ltd., (2003) p. 1865.
    1. Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A. Electroconvulsive therapy, depression, the immune system and inflammation: a systematic review. Brain Stimul Basic Transl Clin Res Neuromodulation (2017) 11(1):29–51. 10.1016/j.brs.2017.10.013
    1. Andrade C. A primer for the conceptualization of the mechanism of action of electroconvulsive therapy, 2: organizing the information. J Clin Psychiatry (2014) 75:e548–551. 10.4088/JCP.14f09234
    1. Gbyl K, Videbech P. Electroconvulsive therapy increases brain volume in major depression: a systematic review and meta-analysis. Acta Psychiatr Scand (2018) 138:180–95. 10.1111/acps.12884
    1. Disner SG, Beevers CG, Haigh EAP, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci (2011) 12:467–77. 10.1038/nrn3027
    1. Bennett MR. The prefrontal-limbic network in depression: modulation by hypothalamus, basal ganglia and midbrain. Prog Neurobiol (2011) 93:468–87. 10.1016/j.pneurobio.2011.01.006
    1. Sartorius A, Demirakca T, Böhringer A, Clemm von Hohenberg C, Aksay SS, Bumb JM, et al. Electroconvulsive therapy induced gray matter increase is not necessarily correlated with clinical data in depressed patients. Brain Stimul (2019) 12:335–43. 10.1016/j.brs.2018.11.017
    1. Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol Psychiatry (2018) 84:574–81. 10.1016/j.biopsych.2018.05.017
    1. Gryglewski G, Baldinger-Melich P, Seiger R, Godbersen GM, Michenthaler P, Klöbl M, et al. Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis. Br J Psychiatry (2019) 214(3):159–67. 10.1192/bjp.2018.224
    1. Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand (2016) 133(2):154–64. 10.1111/acps.12462
    1. Kubicki A, Leaver AM, Vasavada M, Njau S, Wade B, Joshi SH, et al. Variations in hippocampal white matter diffusivity differentiate response to electroconvulsive therapy in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging (2019) 4:300–9. 10.1016/j.bpsc.2018.11.003
    1. Gerischer LM, Fehlner A, Köbe T, Prehn K, Antonenko D, Grittner U, et al. Combining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of Alzheimer’s disease based on magnetic resonance imaging. Neuroimage Clin (2018) 18:485–93. 10.1016/j.nicl.2017.12.023
    1. Thase ME, Rush AJ. When at first you don’t succeed: sequential strategies for antidepressant nonresponders. J Clin Psychiatry (1997) 58 Suppl 13:23–9.
    1. APA Diagnostic and statistical manual of mental disorders (DSM-5 ®) (2013). (Arlington, VA: American Psychiatric Association; ) Available at: [Accessed May 26, 2016].
    1. Nordanskog P, Larsson MR, Larsson E-M, Johanson A. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand (2014) 129:303–11. 10.1111/acps.12150
    1. Scott AI, Lock T. Monitoring seizure activity. In: Freeman CP, editor. The ECT handbook (1995). (London, UK: Royal College of Psychiatrists; )
    1. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatr (1960) 23:56–62. 10.1136/jnnp.23.1.56
    1. Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage (2012) 61:1402–18. 10.1016/j.neuroimage.2012.02.084
    1. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team nlme: linear and nonlinear mixed effects models. (2017). Available at: .
    1. Gillespie NA, Neale MC, Hagler DJ, Eyler LT, Fennema-Notestine C, Franz CE, et al. Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions. Hum Brain Mapp (2017) 38:2589–98. 10.1002/hbm.23544
    1. Sexton CE, Walhovd KB, Storsve AB, Tamnes CK, Westlye LT, Johansen- Berg H, et al. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci (2014) 34:15425–36. 10.1523/JNEUROSCI.0203-14.2014
    1. Sexton CE, Mackay CE, Lonie JA, Bastin ME, Terrière E, O’Carroll RE, et al. MRI correlates of episodic memory in Alzheimer’s disease, mild cognitive impairment, and healthy aging. Psychiatry Res (2010) 184:57–62. 10.1016/j.pscychresns.2010.07.005
    1. Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res (2010) 181:64–70. 10.1016/j.pscychresns.2009.07.007
    1. Spalletta G, Piras F, Caltagirone C, Fagioli S. Hippocampal multimodal structural changes and subclinical depression in healthy individuals. J Affect Disord (2014) 152–154:105–12. 10.1016/j.jad.2013.05.068
    1. Pal D, Trivedi R, Saksena S, Yadav A, Kumar M, Pandey CM, et al. Quantification of age- and gender-related changes in diffusion tensor imaging indices in deep grey matter of the normal human brain. J Clin Neurosci (2011) 18:193–6. 10.1016/j.jocn.2010.05.033
    1. Iturria-Medina Y, Pérez Fernández A, Morris DM, Canales-Rodríguez EJ, Haroon HA, García Pentón L, et al. Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex (2011) 21:56–67. 10.1093/cercor/bhq058
    1. Shu N, Liu Y, Duan Y, Li K. Hemispheric asymmetry of human brain anatomical network revealed by diffusion tensor tractography. Biomed Res Int (2015) 2015:908917. 10.1155/2015/908917
    1. Tian L, Wang J, Yan C, He Y. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. Neuroimage (2011) 54:191–202. 10.1016/j.neuroimage.2010.07.066
    1. Jiang X, Shen Y, Yao J, Zhang L, Xu L, Feng R, et al. Connectome analysis of functional and structural hemispheric brain networks in major depressive disorder. Transl Psychiatry (2019) 9:136. 10.1038/s41398-019-0467-9
    1. Madsen KS, Jernigan TL, Iversen P, Frokjaer VG, Knudsen GM, Siebner HR, et al. Hypothalamic–pituitary–adrenal axis tonus is associated with hippocampal microstructural asymmetry. Neuroimage (2012) 63:95–103. 10.1016/j.neuroimage.2012.06.071
    1. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci (2008) 31:464–8. 10.1016/j.tins.2008.06.006
    1. Lorenzetti V, Allen NB, Whittle S, Yücel M. Amygdala volumes in a sample of current depressed and remitted depressed patients and healthy controls. J Affect Disord (2010) 120:112–9. 10.1016/j.jad.2009.04.021
    1. Chen Y-T, Huang M-W, Hung I-C, Lane H-Y, Hou C-J. Right and left amygdalae activation in patients with major depression receiving antidepressant treatment, as revealed by fMRI. Behav Brain Funct (2014) 10:36. 10.1186/1744-9081-10-36
    1. Chen F, Madsen TM, Wegener G, Nyengaard JR. Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. Eur Neuropsychopharmacol (2009) 19:329–38. 10.1016/j.euroneuro.2008.12.007
    1. Bouckaert F, Dols A, Emsell L, De Winter F-L, Vansteelandt K, Claes L, et al. Relationship between hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacology (2016) 41:2741–8. 10.1038/npp.2016.86
    1. Wennström M, Hellsten J, Tingström A. Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat amygdala. Biol Psychiatry (2004) 55:464–71. 10.1016/j.biopsych.2003.11.011
    1. Nordanskog P, Dahlstrand U, Larsson MR, Larsson E-M, Knutsson L, Johanson A. Increase in hippocampal volume after electroconvulsive therapy in patients with depression: a volumetric magnetic resonance imaging study. J ECT (2010) 26:62–7. 10.1097/YCT.0b013e3181a95da8
    1. Rush AJ, First MB, Blacker D. Handbook of psychiatric measures (2008). Arlington, VA: American Psychiatric Pub.
    1. Kessler RC, Zhao S, Blazer DG, Swartz M. Prevalence, correlates, and course of minor depression and major depression in the National Comorbidity Survey. J Affect Disord (1997) 45:19–30. 10.1016/S0165-0327(97)00056-6
    1. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis (2009) 24:27–53. 10.1007/s11011-008-9118-1
    1. Yrondi A, Aouizerate B, El-Hage W, Moliere F, Thalamas C, Delcourt N, et al. Assessment of translocator protein density, as marker of neuroinflammation, in major depressive disorder: a pilot, multicenter, comparative, controlled, brain PET study (INFLADEP Study). Front Psychiatry (2018) 9:326. 10.3389/fpsyt.2018.00326
    1. Fiori LM, Lin R, Ju C, Belzeaux R, Turecki G. Using epigenetic tools to investigate antidepressant response. Prog Mol Biol Transl Sci (2018) 158:255–72. 10.1016/bs.pmbts.2018.04.004

Source: PubMed

3
Předplatit