Plasma exchange with albumin replacement and disease progression in amyotrophic lateral sclerosis: a pilot study

Mónica Povedano, Andrés Paipa, Miquel Barceló, Michael K Woodward, Sandra Ortega, Raúl Domínguez, Maria Esperança Aragonés, Raquel Horrillo, Montserrat Costa, Antonio Páez, Mónica Povedano, Andrés Paipa, Miquel Barceló, Michael K Woodward, Sandra Ortega, Raúl Domínguez, Maria Esperança Aragonés, Raquel Horrillo, Montserrat Costa, Antonio Páez

Abstract

Background: Plasma exchange (PE) is used to treat a range of neurological disorders. Based on results demonstrated in Alzheimer's disease, we theorized that PE with albumin replacement (PE-A) might alter the metabolic profile of plasma and cerebrospinal fluid in patients with amyotrophic lateral sclerosis (ALS) by removing disease-inducing molecules. The aim of this study was to evaluate the effect of PE-A on disease progression in ALS.

Methods: In this open-label, non-controlled, single-arm, prospective pilot study, 13 adults with ALS had 6 months' treatment with PE-A 5% and 6 months' follow-up. Primary endpoints were changes from baseline in the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score and forced vital capacity (FVC) through 48 weeks. A post hoc analysis compared individual patient data with the expected ALSFRS-R progression slope.

Results: The median ALSFRS-R score declined throughout the study, although the rate of decline was slower than expected in seven patients at treatment end and in five patients at study end. Six patients remained in the same baseline slope progression category, and four patients improved their slope category at treatment end. Median FVC decreased significantly during the study. Treatment was well tolerated. Of 330 PE-A procedures, 0.9% were associated with potentially related adverse events.

Conclusion: Although functional impairment progressed, about two-thirds of patients showed a slower than expected rate of decline at treatment end. Most patients had unaltered (54.5%) or reduced (36.4%) ALSFRS-R slope progression at treatment end. Further evaluation of PE-A in controlled studies involving more patients is warranted.

Eudract number: 2013-004842-40.

Trial registration: ClinicalTrials.gov identifier: NCT02479802.

Keywords: Albumin; Amyotrophic lateral sclerosis; Cognitive function; Motor dysfunction; Plasma exchange.

Conflict of interest statement

Mónica Povedano, Andrés Paipa, Raúl Domínguez and Sandra Ortega report no conflicts of interest. Miquel Barceló, Michael K. Woodward, Maria Esperança Aragonés, Raquel Horrillo, Montserrat Costa and Antonio Páez are employees of Grifols, the manufacturer of Albutein®.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Patient disposition
Fig. 2
Fig. 2
Progression of disability: Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) overall score by week in evaluable patients (n = 13). Treatment ended week 24 (assessment performed at week 25) and follow-up ended week 48. Box plot displays median (IQR). Whiskers ( −) are the minimum value; whiskers ( +) are the maximum value. The mean value is indicated by a plus sign. Green dots are slow progressor patients with an ALSFRS-R slope less than − 0.8 points/month. Orange dots are normal progressor patients with an ALSFRS-R slope between − 0.8 and − 1.33 points per month. Red dots are fast progressor patients with an ALSFRS-R slope greater than − 1.33 points/month. IQR, interquartile range
Fig. 3
Fig. 3
Electromyography motor nerve conduction study results for amplitude (mV) at baseline, treatment end (assessment performed week 25) and end of follow-up in evaluable patients
Fig. 4
Fig. 4
Albumin fatty acid binding capacity and lipid peroxidation by week in evaluable patients (n = 13). Treatment ended at week 24 (assessment performed at week 24) and follow-up ended at week 48. 8-isoPGF2α, 8-iso-prostaglandinF2α; Kd, dissociation constant; MS, mass spectrometry; PE, plasma exchange

References

    1. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH. Correction: amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3:17085. doi: 10.1038/nrdp.2017.85.
    1. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–299. doi: 10.1080/146608200300079536.
    1. Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J, WFN Research Group On ALS/MND A revision of the El Escorial criteria – 2015. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16:291–292. doi: 10.3109/21678421.2015.1049183.
    1. Talbot K. Motor neuron disease: the bare essentials. Pract Neurol. 2009;9:303–309. doi: 10.1136/jnnp.
    1. van den Bos MAJ, Geevasinga N, Higashihara M, Menon P, Vucic S. Pathophysiology and diagnosis of ALS: insights from advances in neurophysiological techniques. Int J Mol Sci. 2019;20:2818. doi: 10.3390/ijms20112818.
    1. Smith RG, Henry YK, Mattson MP, Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1998;44:696–699. doi: 10.1002/ana.410440419.
    1. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol. 1998;44:819–824. doi: 10.1002/ana.410440518.
    1. Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, Kawaguchi M, Yamamoto T, Sasaki S, Kobayashi M. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res. 2001;917:97–104. doi: 10.1016/s0006-8993(01)02926-2.
    1. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients. A potential biomarker of disease burden. Neurology. 2004;62:1758–1765. doi: 10.1212/wnl.62.10.1758.
    1. Shibata N, Yamada S, Uchida K, Hirano A, Sakoda S, Fujimura H, Sasaki S, Iwata M, Toi S, Kawaguchi M, Yamamoto T, Kobayashi M. Accumulation of protein-bound 4-hydroxy-2-hexenal in spinal cords from patients with sporadic amyotrophic lateral sclerosis. Brain Res. 2004;1019:170–177. doi: 10.1016/j.brainres.2004.05.110.
    1. Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu HC, Mahata J, Kilty M, Bednarz K, Bell D, Gordon PH, Hornig M, Mehrazin M, Naini A, Flint Beal M. Factor-Litvak P (2008) Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler. 2008;9(3):177–183. doi: 10.1080/17482960801933942.
    1. Parakh S, Spencer DM, Halloran MA, Soo KY, Atkin JD. Redox regulation in amyotrophic lateral sclerosis. Oxid Med Cell Longev. 2013;2013:408681. doi: 10.1155/2013/408681.
    1. Andrés-Benito P, Gelpi E, Jové M, Mota-Martorell N, Obis È, Portero-Otin M, Povedano M, Pujol A, Pamplona R, Ferrer I. Lipid alterations in human frontal cortex in ALS-FTLD-TDP43 proteinopathy spectrum are partly related to peroxisome impairment. Neuropathol Appl Neurobiol. 2020 doi: 10.1111/nan.12681.
    1. Saul J, Hutchins E, Reiman R, Saul M, Ostrow LW, Harris BT, Van Keuren-Jensen K, Bowser R, Bakkar N. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2020;8:92. doi: 10.1186/s40478-020-00968-9.
    1. Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, Hedlund E. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci. 2013;71(6):999–1015. doi: 10.1007/s00018-013-1480-4.
    1. Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005. doi: 10.3389/fimmu.2017.01005.
    1. Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 years of failure Are we any closer to registering a new treatment? Front Aging Neurosci. 2017;9:68. doi: 10.3389/fnagi.2017.00068.
    1. Monstad I, Dale I, Petlund CF, Sjaastad O. Plasma exchange in motor neuron disease A controlled study. J Neurol. 1979;221(1):59–66. doi: 10.1007/BF00313170.
    1. Silani V, Scarlato G, Valli G, Marconi M. Plasma exchange ineffective in amyotrophic lateral sclerosis. Arch Neurol. 1980;37(8):511–513. doi: 10.1001/archneur.1980.00500570059009.
    1. Kelemen J, Hedlund W, Orlin JB, Berkman EM, Munsat TL. Plasmapheresis with immunosuppression in amyotrophic lateral sclerosis. Arch Neurol. 1983;40(12):752–753. doi: 10.1001/archneur.1983.04050110070012.
    1. European Medicines Agency (2015) Guideline on clinical investigation of medicinal products for the treatment of amyotrophic lateral sclerosis (ALS). . Accessed 3 May 2021
    1. Cortese I, Cornblath DR. Therapeutic plasma exchange in neurology: 2012. J Clin Apher. 2013;28:16–19. doi: 10.1002/jca.21266.
    1. Láinez-Andrés JM, Gascón-Giménez F, Coret-Ferrer F, Casanova-Estruch B, Santonja JM. Recambio plasmático terapéutico: aplicaciones en neurología [Therapeutic plasma exchange: applications in neurology] Rev Neurol. 2015;60:120–131. doi: 10.33588/rn.6003.2014393.
    1. Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, Pham HP, Schneiderman J, Witt V, Wu Y, Zantek ND, Dunbar NM, Schwartz GEJ. Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the writing committee of the American Society for Apheresis: the eighth special issue. J Clin Apher. 2019;34:171–354. doi: 10.1002/jca.21705.
    1. Jamshidian A, Abd-Nikfarjam B, Khademi Z, Shaygannejad V, Salehi M. Therapeutic plasma exchange may adjust IL-6 and TGF-β signals in relapsed MS patients peripheral blood. J Clin Apher. 2020;35:72–78. doi: 10.1002/jca.21755.
    1. Fasano CS, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005;57:787–796. doi: 10.1080/15216540500404093.
    1. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008;582:1783–1787. doi: 10.1016/j.febslet.2008.04.057.
    1. Prajapati KD, Sharma SS, Roy N. Current perspectives on potential role of albumin in neuroprotection. Rev Neurosci. 2011;22:355–363. doi: 10.1515/RNS.2011.028.
    1. Gum ET, Swanson RA, Alano C, Liu J, Hong S, Weinstein PR, Panter SS. Human serum albumin and its N-terminal tetrapeptide (DAHK) block oxidant-induced neuronal death. Stroke. 2004;35:590–595. doi: 10.1161/01.STR.0000110790.05859.DA.
    1. Zhang LJ, Xue YQ, Yang C, Yang WH, Chen L, Zhang QJ, Qu TY, Huang S, Zhao LR, Wang XM, Duan WM. Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo. PLoS ONE. 2012;7:e41226. doi: 10.1371/journal.pone.0041226.
    1. Boada M, Ortiz P, Anaya F, Hernández I, Muñoz J, Núñez L, Olazarán J, Roca I, Cuberas G, Tárraga L, Buendia M, Pla RP, Ferrer I, Páez A. Amyloid-targeted therapeutics in Alzheimer’s disease: use of human albumin in plasma exchange as a novel approach for Abeta mobilization. Drug News Perspect. 2009;22:325–339. doi: 10.1358/dnp.2009.22.6.1395256.
    1. Boada M, Anaya F, Ortiz P, Olazarán J, Shua-Haim JR, Obisesan TO, Hernández I, Muñoz J, Buendia M, Alegret M, Lafuente A, Tárraga L, Núñez L, Torres M, Grifols JR, Ferrer I, Lopez OL, Páez A. Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in Alzheimer’s disease patients: a multicenter, randomized, controlled clinical trial. J Alzheimers Dis. 2017;56:129–143. doi: 10.3233/JAD-160565.
    1. Boada M, Lopez O, Olazaran J, Nunez L, Pfeffer M, Paricio M, Lorites J, Piñol-Ripoll G, Gámez J, Anaya F, Kiprov D, Lima J, Grifols C, Torres M, Costa M, Bozzo J, Szczepiorkowski ZM, Hendix S, Paez A. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimer’s Dement. 2020;16:1412–1425. doi: 10.1002/alz.12137.
    1. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III) J Neurol Sci. 1999;169:13–21. doi: 10.1016/s0022-510x(99)00210-5.
    1. Woolley SC, York MK, Moore DH, Strutt AM, Murphy J, Schulz PE, Katz JS. Detecting frontotemporal dysfunction in ALS: utility of the ALS Cognitive Behavioral Screen (ALS-CBS) Amyotroph Lateral Scler. 2010;11:303–311. doi: 10.3109/17482961003727954.
    1. Jenkinson C, Fitzpatrick R, Brennan C, Bromberg M, Swash M. Development and validation of a short measure of health status for individuals with amyotrophic lateral sclerosis/motor neurone disease: the ALSAQ-40. J Neurol. 1999;246(Suppl 3):16–21. doi: 10.1007/BF03161085.
    1. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) Cochrane Database Syst Rev. 2012;3:CD001447. doi: 10.1002/14651858.CD001447.pub3.
    1. Hinchcliffe M, Smith A. Riluzole: real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis. Degener Neurol Neuromuscul Dis. 2017;7:61–70. doi: 10.2147/DNND.S135748.
    1. Schultz J. Disease-modifying treatment of amyotrophic lateral sclerosis. Am J Manag Care. 2018;24(15 Suppl):S327–335.
    1. Al-Chalabi A, Andersen PM, Chandran S, Chio A, Corcia P, Couratier P, Danielsson O, de Carvalho M, Desnuelle C, Grehl T, Grosskreutz J, Holmøy T, Ingre C, Karlsborg M, Kleveland G, Koch JC, Koritnik B, KuzmaKozakiewicz M, Laaksovirta H, Ludolph A, McDermott C, Meyer T, Mitre Ropero B, Mora Pardina J, Nygren I, Petri S, Povedano Panades M, Salachas F, Shaw P, Silani V, Staaf G, Svenstrup K, Talbot K, Tysnes OB, Van Damme P, van der Kooi A, Weber M, Weydt P, Wolf J, Hardiman O, van den Berg LH. July 2017 ENCALS statement on edaravone. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:471–474. doi: 10.1080/21678421.2017.1369125.
    1. Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2017;18:735–738. doi: 10.1080/14656566.2017.1319937.
    1. Phukan J, Elamin M, Bede P, Jordan N, Gallagher L, Byrne S, Lynch C, Pender N, Hardiman O. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2012;83(1):102–108. doi: 10.1136/jnnp-2011-300188.
    1. Wooley SC (2014) ALS-CBS manual instructions – revised. 2014. Accessed 3 May 2021
    1. Elamin M, Bede P, Byrne S, Jordan N, Gallagher L, Wynne B, O'Brien C, Phukan J, Lynch C, Pender N, Hardiman O. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology. 2013;80:1590–1597. doi: 10.1212/WNL.0b013e31828f18ac.
    1. Fujiwara S, Amisaki T. Fatty acid binding to serum albumin: molecular simulation approaches. Biochim Biophys Acta. 2013;1830:5427–5434. doi: 10.1016/j.bbagen.2013.03.032.
    1. Bakker LA, Schröder CD, van Es MA, Westers P, Visser-Meily JMA, van den Berg LH. Assessment of the factorial validity and reliability of the ALSFRS-R: a revision of its measurement model. J Neurol. 2017;264:1413–1420. doi: 10.1007/s00415-017-8538-4.
    1. Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, Karam C, Caress JB, Owegi MA, Quick A, Wymer J, Goutman SA, Heitzman D, Heiman-Patterson T, Jackson CE, Quinn C, Rothstein JD, Kasarskis EJ, Katz J, Jenkins L, Ladha S, Miller TM, Scelsa SN, Vu TH, Fournier CN, Glass JD, Johnson KM, Swenson A, Goyal NA, Pattee GL, Andres PL, Babu S, Chase M, Dagostino D, Dickson SP, Ellison N, Hall M, Hendrix K, Kittle G, McGovern M, Ostrow J, Pothier L, Randall R, Shefner JM, Sherman AV, Tustison E, Vigneswaran P, Walker J, Yu H, Chan J, Wittes J, Cohen J, Klee J, Leslie K, Tanzi RE, Gilbert W, Yeramian PD, Schoenfeld D, Cudkowicz ME. Trial of sodium phenylbutyrate–taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383:919–930. doi: 10.1056/NEJMoa1916945.
    1. . Pilot study to evaluate the efficacy and safety of plasma exchange with Albutein® 5% in patients with amyotrophic lateral sclerosis. . Accessed 12 Nov 2021

Source: PubMed

3
Předplatit