Biomarkers of Brain Damage and Postoperative Cognitive Disorders in Orthopedic Patients: An Update

Dariusz Tomaszewski, Dariusz Tomaszewski

Abstract

The incidence of postoperative cognitive dysfunction (POCD) in orthopedic patients varies from 16% to 45%, although it can be as high as 72%. As a consequence, the hospitalization time of patients who developed POCD was longer, the outcome and quality of life were worsened, and prolonged medical and social assistance were necessary. In this review the short description of such biomarkers of brain damage as the S100B protein, NSE, GFAP, Tau protein, metalloproteinases, ubiquitin C terminal hydrolase, microtubule-associated protein, myelin basic protein, α-II spectrin breakdown products, and microRNA was made. The role of thromboembolic material in the development of cognitive decline was also discussed. Special attention was paid to optimization of surgical and anesthetic procedures in the prevention of postoperative cognitive decline.

References

    1. Rasmussen L. S. Defining postoperative cognitive dysfunction. European Journal of Anaesthesiology. 1998;15(6):761–764. doi: 10.1097/00003643-199811000-00026.
    1. Monk T. G., Price C. C. Postoperative cognitive disorders. Current Opinion in Critical Care. 2011;17(4):376–381.
    1. Krenk L., Rasmussen L. S., Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction. Acta Anaesthesiologica Scandinavica. 2010;54(8):951–956. doi: 10.1111/j.1399-6576.2010.02268.x.
    1. Morandi A., Pandharipande P. P., Jackson J. C., Bellelli G., Trabucchi M., Ely E. W. Understanding terminology of delirium and long-term cognitive impairment in critically ill patients. Best Practice and Research: Clinical Anaesthesiology. 2012;26(3):267–276. doi: 10.1016/j.bpa.2012.08.001.
    1. Deiner S., Silverstein J. H. Postoperative delirium and cognitive dysfunction. British Journal of Anaesthesia. 2009;103(1):i41–i46. doi: 10.1093/bja/aep291.
    1. Wu C. L., Hsu W., Richman J. M., Raja S. N. Postoperative cognitive function as an outcome of regional anesthesia and analgesia. Regional Anesthesia and Pain Medicine. 2004;29(3):257–268. doi: 10.1016/j.rapm.2003.11.007.
    1. Price C. C., Garvan C. W., Monk T. G. Type and severity of cognitive decline in older adults after noncardiac surgery. Anesthesiology. 2008;108(1):8–17. doi: 10.1097/01.anes.0000296072.02527.18.
    1. Anderson R. E., Hansson L.-O., Nilsson O., Dijlai-Merzoug R., Settergren G. High serum S100b levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255–1260.
    1. Kinoshita H., Iranami H., Fujii K., et al. The use of bone cement induces an increase in serum astroglial S-100B protein in patients undergoing total knee arthroplasty. Anesthesia & Analgesia. 2003;97(6):1657–1660. doi: 10.1213/01.ANE.0000089963.42295.FC.
    1. Pelinka L. E., Szalay L., Jafarmadar M., Schmidhammer R., Redl H., Bahrami S. Circulating S100B is increased after bilateral femur fracture without brain injury in the rat. British Journal of Anaesthesia. 2003;91(4):595–597. doi: 10.1093/bja/aeg225.
    1. Stolz E., Gerriets T., Kluge A., Klövekorn W.-P., Kaps M., Bachmann G. Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: implications for future neuroprotective trials? Stroke. 2004;35(4):888–892. doi: 10.1161/01.STR.0000120306.82787.5A.
    1. Ramlawi B., Rudolph J. L., Mieno S., et al. Serologic markers of brain injury and cognitive function after cardiopulmonary bypass. Annals of Surgery. 2006;244(4):593–600. doi: 10.1097/01.sla.0000239087.00826.b4.
    1. Stålnacke B.-M., Ohlsson A., Tegner Y., Sojka P. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. British Journal of Sports Medicine. 2006;40(4):313–316. doi: 10.1136/bjsm.2005.021584.
    1. Taurino M., Raffa S., Mastroddi M., et al. Metalloproteinase expression in carotid plaque and its correlation with plasma levels before and after carotid endarterectomy. Vascular and Endovascular Surgery. 2008;41(6):516–521. doi: 10.1177/1538574407307405.
    1. van Munster B. C., Korse C. M., de Rooij S. E., Bonfrer J. M., Zwinderman A. H., Korevaar J. C. Markers of cerebral damage during delirium in elderly patients with hip fracture. BMC Neurology. 2009;9, article 21 doi: 10.1186/1471-2377-9-21.
    1. Gaudet J. G., Yocum G. T., Lee S. S., et al. MMP-9 levels in elderly patients with cognitive dysfunction after carotid surgery. Journal of Clinical Neuroscience. 2010;17(4):436–440. doi: 10.1016/j.jocn.2009.07.103.
    1. Mondello S., Robicsek S. A., Gabrielli A., et al. αiI-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. Journal of Neurotrauma. 2010;27(7):1203–1213. doi: 10.1089/neu.2010.1278.
    1. Tomaszewski D., Rybicki Z., Mozański M. The influence of bone cement implantation in primary hip arthroplasty on S100B protein serum concentration and patients' cognitive functions as markers of brain damage. European Journal of Trauma and Emergency Surgery. 2010;36(1):31–43. doi: 10.1007/s00068-009-8084-6.
    1. Witlox J., Kalisvaart K. J., De Jonghe J. F. M., et al. Cerebrospinal fluid β-amyloid and tau are not associated with risk of delirium: a prospective cohort study in older adults with hip fracture. Journal of the American Geriatrics Society. 2011;59(7):1260–1267. doi: 10.1111/j.1532-5415.2011.03482.x.
    1. Jones E. L., Gauge N., Nilsen O. B., et al. Analysis of neuron-specific enolase and S100B as biomarkers of cognitive decline following surgery in older people. Dementia and Geriatric Cognitive Disorders. 2012;34(5-6):307–311. doi: 10.1159/000345538.
    1. Mondello S., Gabrielli A., Catani S., et al. Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Injury. 2012;26(13-14):1629–1635. doi: 10.3109/02699052.2012.700083.
    1. Papa L., Lewis L. M., Silvestri S., et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. Journal of Trauma and Acute Care Surgery. 2012;72(5):1335–1344. doi: 10.1097/TA.0b013e3182491e3d.
    1. Ji M.-H., Yuan H.-M., Zhang G.-F., et al. Changes in plasma and cerebrospinal fluid biomarkers in aged patients with early postoperative cognitive dysfunction following total hip-replacement surgery. Journal of Anesthesia. 2013;27(2):236–242. doi: 10.1007/s00540-012-1506-3.
    1. Xie Z., McAuliffe S., Swain C. A., et al. Cerebrospinal fluid aβ to tau ratio and postoperative cognitive change. Annals of Surgery. 2013;258(2):364–369. doi: 10.1097/SLA.0b013e318298b077.
    1. Anckarsäter R., Anckarsäter H., Bromander S., Blennow K., Wass C., Zetterberg H. Non-neurological surgery and cerebrospinal fluid biomarkers for neuronal and astroglial integrity. Journal of Neural Transmission. 2014;121(6):649–653. doi: 10.1007/s00702-013-1156-0.
    1. Gempp E., Louge P., de Maistre S., Emile L., Blatteau J.-E. Neuron-specific enolase and S100B protein levels in recreational scuba divers with neurological decompression sickness. Diving and Hyperbaric Medicine. 2014;44(1):26–29.
    1. Blaise G., Taha R., Qi Y. Postoperative cognitive dysfunction (POCD) Anesthesiology Rounds. 2007;6(4)
    1. Veering B. T. Management of anaesthesia in elderly patients. Current Opinion in Anaesthesiology. 1999;12(3):333–336. doi: 10.1097/00001503-199906000-00014.
    1. Canet J., Raeder J., Rasmussen L. S., et al. Cognitive dysfunction after minor surgery in the elderly. Acta Anaesthesiologica Scandinavica. 2003;47(10):1204–1210. doi: 10.1046/j.1399-6576.2003.00238.x.
    1. Fines D. P., Severn A. M. Anaesthesia and cognitive disturbance in the elderly. Continuing Education in Anaesthesia, Critical Care and Pain. 2006;6(1):37–40. doi: 10.1093/bjaceaccp/mki066.
    1. Kyziridis T. C. Post-operative delirium after hip fracture treatment: a review of the current literature. GMS Psycho-Social Medicine. 2006;3:1–12.
    1. Singh A., Antognini J. F. Perioperative pharmacology in elderly patients. Current Opinion in Anaesthesiology. 2010;23(4):449–454. doi: 10.1097/ACO.0b013e328339ef22.
    1. Moller J. T., Cluitmans P., Rasmussen L. S., et al. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. The Lancet. 1998;351(9106):857–861. doi: 10.1016/S0140-6736(97)07382-0.
    1. Coburn M., Fahlenkamp A., Zoremba N., Schaelte G. Postoperative cognitive dysfunction: incidence and prophylaxis. Anaesthesist. 2010;59(2):177–185. doi: 10.1007/s00101-009-1657-2.
    1. Harwood T. N. Optimizing outcome in the very elderly surgical patient. Current Opinion in Anaesthesiology. 2000;13(3):327–332. doi: 10.1097/00001503-200006000-00017.
    1. Fodale V., Santamaria L. B., Schifilliti D., Mandal P. K. Anaesthetics and postoperative cognitive dysfunction: a pathological mechanism mimicking Alzheimer's disease. Anaesthesia. 2010;65(4):388–395. doi: 10.1111/j.1365-2044.2010.06244.x.
    1. Desborough J. P. The stress response to trauma and surgery. British Journal of Anaesthesia. 2000;85(1):109–117. doi: 10.1093/bja/85.1.109.
    1. Lemstra A. W., Kalisvaart K. J., Vreeswijk R., van Gool W. A., Eikelenboom P. Pre-operative inflammatory markers and the risk of postoperative delirium in elderly patients. International Journal of Geriatric Psychiatry. 2008;23(9):943–948. doi: 10.1002/gps.2015.
    1. Ologunde R., Ma D. Do inhalational anesthetics cause cognitive dysfunction? Acta Anaesthesiologica Taiwanica. 2011;49(4):149–153. doi: 10.1016/j.aat.2011.11.001.
    1. Kalb A., von Haefen C., Sifringer M., et al. Acetylcholinesterase inhibitors reduce neuroinflammation and -degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0062679.e62679
    1. Peng L., Xu L., Ouyang W. Role of peripheral inflammatory markers in Postoperative Cognitive Dysfunction (POCD): a meta-analysis. PLoS ONE. 2013;8(11) doi: 10.1371/journal.pone.0079624.e79624
    1. Rudolph J. L., Ramlawi B., Kuchel G. A., et al. Chemokines are associated with delirium after cardiac surgery. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2008;63(2):184–189. doi: 10.1093/gerona/63.2.184.
    1. Wu X., Lu Y., Dong Y., et al. The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-α, IL-6, and IL-1β . Neurobiology of Aging. 2012;33(7):1364–1378. doi: 10.1016/j.neurobiolaging.2010.11.002.
    1. Schilling T., Kozian A., Senturk M., et al. Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology. 2011;115(1):65–74. doi: 10.1097/ALN.0b013e318214b9de.
    1. Hudson A. E., Hemmings H. C. Are anaesthetics toxic to the brain? British Journal of Anaesthesia. 2011;107(1):30–37. doi: 10.1093/bja/aer122.
    1. Vlisides P., Xie Z. Neurotoxicity of general anesthetics: an update. Current Pharmaceutical Design. 2012;18(38):6232–6240. doi: 10.2174/138161212803832344.
    1. Dong Y., Zhang G., Zhang B., et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases β-amyloid protein levels. Archives of Neurology. 2009;66(5):620–631. doi: 10.1001/archneurol.2009.48.
    1. Whittington R. A., Virág L., Marcouiller F., et al. Propofol directly increases tau phosphorylation. PLoS ONE. 2011;6(1) doi: 10.1371/journal.pone.0016648.e16648
    1. Abildstrom H., Christiansen M., Siersma V. D., Rasmussen L. S. Apolipoprotein E genotype and cognitive dysfunction after noncardiac surgery. Anesthesiology. 2004;101(4):855–861. doi: 10.1097/00000542-200410000-00009.
    1. Scott J. E., Mathias J. L., Kneebone A. C. Postoperative cognitive dysfunction after total joint arthroplasty in the elderly: a meta-analysis. Journal of Arthroplasty. 2014;29(2):261.e1–267.e1. doi: 10.1016/j.arth.2013.06.007.
    1. Deo H., West G., Butcher C., Lewis P. The prevalence of cognitive dysfunction after conventional and computer-assisted total knee replacement. Knee. 2011;18(2):117–120. doi: 10.1016/j.knee.2010.03.006.
    1. Colonna D. M., Kilgus D., Brown W., Challa V., Stump D. A., Moody D. M. Acute brain fat embolization occurring after total hip arthroplasty in the absence of a patent foramen ovale. Anesthesiology. 2002;96(4):1027–1029. doi: 10.1097/00000542-200204000-00036.
    1. Riding G., Dally K., Hutchinson S., Rao S., Lovell M., McCollum C. Paradoxical cerebral embolisation. An explanation for fat embolism syndrome. Journal of Bone and Joint Surgery—Series B. 2004;86(1):95–98.
    1. Jenkins K., Chung F., Wennberg R., Etchells E. E., Davey R. Fat embolism syndrome and elective knee arthroplasty. Canadian Journal of Anesthesia. 2002;49(1):19–24. doi: 10.1007/BF03020414.
    1. Fallon K. M., Fuller J. G., Morley-Forster P. Fat embolization and fatal cardiac arrest during hip arthroplasty with methylmethacrylate. Canadian Journal of Anesthesia. 2001;48(7):626–629. doi: 10.1007/BF03016194.
    1. Scroop R., Eskridge J., Britz G. W. Paradoxical cerebral arterial embolization of cement during intraoperative vertebroplasty: case report. American Journal of Neuroradiology. 2002;23(5):868–870.
    1. Sukernik M. R., Mets B., Bennett-Guerrero E. Patent foramen ovale and its significance in the perioperative period. Anesthesia and Analgesia. 2001;93(5):1137–1146. doi: 10.1097/00000539-200111000-00015.
    1. Ingebrigtsen T., Romner B. Biochemical serum markers for brain damage: a short review with emphasis on clinical utility in mild head injury. Restorative Neurology and Neuroscience. 2003;21(3-4):171–176.
    1. Marenholz I., Heizmann C. W., Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature) Biochemical and Biophysical Research Communications. 2004;322(4):1111–1122. doi: 10.1016/j.bbrc.2004.07.096.
    1. Heizmann C. W. S100B protein in clinical diagnostics: assay specificity. Clinical Chemistry. 2004;50(1):249–251. doi: 10.1373/clinchem.2003.027367.
    1. Shaaban Ali M., Harmer M., Vaughan R. Serum S100 protein as a marker of cerebral damage during cardiac surgery. British Journal of Anaesthesia. 2000;85(2):287–298. doi: 10.1093/bja/85.2.287.
    1. Raabe A., Kopetsch O., Woszczyk A., et al. Serum S-100B protein as a molecular marker in severe traumatic brain injury. Restorative Neurology and Neuroscience. 2003;21(3-4):159–169.
    1. Eckert R. L., Broome A.-M., Ruse M., Robinson N., Ryan D., Lee K. S100 proteins in the epidermis. Journal of Investigative Dermatology. 2004;123(1):23–33. doi: 10.1111/j.0022-202X.2004.22719.x.
    1. Cata J. P., Abdelmalak B., Farag E. Neurological biomarkers in the perioperative period. British Journal of Anaesthesia. 2011;107(6):844–858. doi: 10.1093/bja/aer338.
    1. Kleindienst A., Bullock M. R. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. Journal of Neurotrauma. 2006;23(8):1185–1200. doi: 10.1089/neu.2006.23.1185.
    1. Pelinka L. E. Serum markers of severe traumatic brain injury: are they useful? Indian Journal of Critical Care Medicine. 2005;8(3):190–193.
    1. Stålnacke B.-M., Tegner Y., Sojka P. Playing ice hockey and basketball increases serum levels of S-100B in elite players: a pilot study. Clinical Journal of Sport Medicine. 2003;13(5):292–302. doi: 10.1097/00042752-200309000-00004.
    1. Donato R., Riuzzi F., Sorci G. Causes of elevated serum levels of S100B protein in athletes. European Journal of Applied Physiology. 2013;113(3):819–820. doi: 10.1007/s00421-012-2566-7.
    1. Salama I., Malone P. S., Mihaimeed F., Jones J. L. A review of the S100 proteins in cancer. European Journal of Surgical Oncology. 2008;34(4):357–364. doi: 10.1016/j.ejso.2007.04.009.
    1. Piazza O., Russo E., Cotena S., Esposito G., Tufano R. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. British Journal of Anaesthesia. 2007;99(4):518–521. doi: 10.1093/bja/aem201.
    1. Yokobori S., Hosein K., Burks S., Sharma I., Gajavelli S., Bullock R. Biomarkers for the clinical differential diagnosis in traumatic brain injury—a systematic review. CNS Neuroscience & Therapeutics. 2013;19(8):556–565. doi: 10.1111/cns.12127.
    1. Pelinka L. E., Kroepfl A., Leixnering M., Buchinger W., Raabe A., Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. Journal of Neurotrauma. 2004;21(11):1553–1561. doi: 10.1089/neu.2004.21.1553.
    1. Pelinka L. E., Kroepfl A., Schmidhammer R., et al. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. Journal of Trauma: Injury Infection & Critical Care. 2004;57(5):1006–1012. doi: 10.1097/01.TA.0000108998.48026.C3.
    1. Schiff L., Hadker N., Weiser S., Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Molecular Diagnosis and Therapy. 2012;16(2):79–92. doi: 10.2165/11631360-000000000-00000.
    1. Sun Y., Qin Q., Shang Y.-J., et al. The accuracy of glial fibrillary acidic protein in acute stroke differential diagnosis: a meta-analysis. Scandinavian Journal of Clinical and Laboratory Investigation. 2013;73(8):601–606. doi: 10.3109/00365513.2013.830326.
    1. Nakasa T., Nagata Y., Yamasaki K., Ochi M. A mini-review: microRNA in arthritis. Physiological Genomics. 2011;43(10):566–570. doi: 10.1152/physiolgenomics.00142.2010.
    1. Nugent M. MicroRNA function and dysregulation in bone tumors: the evidence to date. Cancer Management and Research. 2014;6(1):15–25. doi: 10.2147/CMAR.S53928.
    1. Undén J., Bellner J., Eneroth M., Alling C., Ingebrigtsen T., Romner B. Raised serum S100B levels after acute bone fractures without cerebral injury. The Journal of Trauma Injury Infection and Critical Care. 2005;58(1):59–61. doi: 10.1097/01.TA.0000130613.35877.75.
    1. Lee S. J., Kim C. W., Lee K. J., et al. Elevated serum S100B levels in acute spinal fracture without head injury. Emergency Medicine Journal. 2010;27(3):209–212. doi: 10.1136/emj.2008.063743.
    1. Ohrt-Nissen S., Friis-Hansen L., Dahl B., Stensballe J., Romner B., Rasmussen L. S. How does extracerebral trauma affect the clinical value of S100B measurements? Emergency Medicine Journal. 2011;28(11):941–944. doi: 10.1136/emj.2010.091363.
    1. van Munster B. C., Bisschop P. H., Zwinderman A. H., et al. Cortisol, interleukins and S100B in delirium in the elderly. Brain and Cognition. 2010;74(1):18–23. doi: 10.1016/j.bandc.2010.05.010.
    1. Donaldson A. J., Thomson H. E., Harper N. J., Kenny N. W. Bone cement implantation syndrome. British Journal of Anaesthesia. 2009;102(1):12–22. doi: 10.1093/bja/aen328.
    1. Sharrock N. E., Beckman J. D., Inda E. C., Savarese J. J. Miller's Anesthesia. London, UK: Elsevier Churchill Livingstone; 2005. Anesthesia for orthopedic surgery; p. p. 2417.
    1. Niden A. H., Aviado D. M. Effects of pulmonary embolism on the pulmonary circulation with special reference to arteriovenous shunts in the lung. Circulation Research. 1956;4(1):67–73.
    1. Hayakawa M., Fujioka Y., Morimoto Y., Okamura A., Kemmotsu O. Pathological evaluation of venous emboli during total hip arthroplasty. Anaesthesia. 2001;56(6):571–575. doi: 10.1046/j.1365-2044.2001.01913-2.x.
    1. Kim Y.-H., Oh S.-W., Kim J.-S. Prevalence of fat embolism following bilateral simultaneous and unilateral total hip arthroplasty performed with or without cement: a prospective, randomized clinical study. Journal of Bone and Joint Surgery—Series A. 2002;84(8):1372–1379.
    1. Clark D. I., Ahmed A. B., Baxendale B. R., Moran C. G. Cardiac output during hemiarthroplasty of the hip. Journal of Bone and Joint Surgery—Series B. 2001;83(3):414–418. doi: 10.1302/0301-620X.83B3.11477.
    1. Concepcion M. Principles and Practice of Anesthesiology. Mosby; 1998. Anesthesia for orthopedic surgery; pp. 2113–2137.
    1. Evered L., Scott D. A., Silbert B., Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesthesia and Analgesia. 2011;112(5):1179–1185. doi: 10.1213/ANE.0b013e318215217e.
    1. Zywiel M. G., Prabhu A., Perruccio A. V., Gandhi R. The influence of anesthesia and pain management on cognitive dysfunction after joint arthroplasty: a systematic review. Clinical Orthopaedics and Related Research. 2014;472(5):1453–1466. doi: 10.1007/s11999-013-3363-2.
    1. Zhang B., Tian M., Zheng H., et al. Effects of anesthetic isoflurane and desflurane on human cerebrospinal fluid Aβ and τ level. Anesthesiology. 2013;119(1):52–60. doi: 10.1097/ALN.0b013e31828ce55d.
    1. Hudetz J. A., Patterson K. M., Iqbal Z., et al. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. Journal of Cardiothoracic and Vascular Anesthesia. 2009;23(5):651–657. doi: 10.1053/j.jvca.2008.12.021.
    1. Hudetz J. A., Iqbal Z., Gandhi S. D., et al. Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anaesthesiologica Scandinavica. 2009;53(7):864–872. doi: 10.1111/j.1399-6576.2009.01978.x.
    1. Hebl J. R., Kopp S. L., Ali M. H., et al. A comprehensive anesthesia protocol that emphasizes peripheral nerve blockade for total knee and total hip arthroplasty. Journal of Bone and Joint Surgery A. 2005;87(12):63–70. doi: 10.2106/JBJS.E.00491.
    1. Peters C. L., Shirley B., Erickson J. The effect of a new multimodal perioperative anesthetic regimen on postoperative pain, side effects, rehabilitation, and length of hospital stay after total joint arthroplasty. The Journal of Arthroplasty. 2006;21(6, supplement 2):132–138. doi: 10.1016/j.arth.2006.04.017.
    1. Langford R. M., Joshi G. P., Gan T. J., et al. Reduction in opioid-related adverse events and improvement in function with parecoxib followed by valdecoxib treatment after non-cardiac surgery: a randomized, double-blind, placebo-controlled, parallel-group trial. Clinical Drug Investigation. 2009;29(9):577–590. doi: 10.2165/11317570-000000000-00000.
    1. Marino J., Russo J., Kenny M., Herenstein R., Livote E., Chelly J. E. Continuous lumbar plexus block for postoperative pain control after total hip arthroplasty a randomized controlled trial. Journal of Bone and Joint Surgery A. 2009;91(1):29–37. doi: 10.2106/JBJS.H.00079.
    1. YaDeau J. T., Cahill J. B., Zawadsky M. W., et al. The effects of femoral nerve blockade in conjunction with epidural analgesia after total knee arthroplasty. Anesthesia and Analgesia. 2005;101(3):891–895. doi: 10.1213/01.ANE.0000159150.79908.21.
    1. Herrick I. A., Ganapathy S., Komar W., et al. Postoperative cognitive impairment in the elderly: choice of patient-controlled analgesia opioid. Anaesthesia. 1996;51(4):356–360. doi: 10.1111/j.1365-2044.1996.tb07748.x.
    1. Hartrick C. T., Bourne M. H., Gargiulo K., Damaraju C. V., Vallow S., Hewitt D. J. Fentanyl iontophoretic transdermal system for acute-pain management after orthopedic surgery: a comparative study with morphine intravenous patient-controlled analgesia. Regional Anesthesia and Pain Medicine. 2006;31(6):546–554. doi: 10.1016/j.rapm.2006.08.011.
    1. Ilahi O. A., Davidson J. P., Tullos H. S. Continuous epidural analgesia using fentanyl and bupivacaine after total knee arthroplasty. Clinical Orthopaedics and Related Research. 1994;(299):44–52.
    1. Price C. C., Tanner J. J., Schmalfuss I., et al. A pilot study evaluating presurgery neuroanatomical biomarkers for postoperative cognitive decline after total knee arthroplasty in older adults. Anesthesiology. 2014;120(3):601–613.
    1. Krenk L., Rasmussen L. S., Hansen T. B., Bogø S., Søballe K., Kehlet H. Delirium after fast-track hip and knee arthroplasty. British Journal of Anaesthesia. 2012;108(4):607–611. doi: 10.1093/bja/aer493.
    1. Krenk L., Rasmussen L. S., Kehlet H. Delirium in the fast-track surgery setting. Best Practice and Research: Clinical Anaesthesiology. 2012;26(3):345–353. doi: 10.1016/j.bpa.2012.07.004.
    1. Krenk L., Kehlet H., Bæk Hansen T., Solgaard S., Soballe K., Rasmussen L. S. Cognitive dysfunction after fast-track hip and knee replacement. Anesthesia & Analgesia. 2014;118(5):1034–1040.
    1. Farag E., Chelune G. J., Schubert A., Mascha E. J. Is depth of anesthesia, as assessed by the Bispectral Index, related to postoperative cognitive dysfunction and recovery? Anesthesia and Analgesia. 2006;103(3):633–640. doi: 10.1213/01.ane.0000228870.48028.b5.
    1. Steinmetz J., Funder K. S., Dahl B. T., Rasmussen L. S. Depth of anaesthesia and post-operative cognitive dysfunction. Acta Anaesthesiologica Scandinavica. 2010;54(2):162–168. doi: 10.1111/j.1399-6576.2009.02098.x.
    1. Chan M. T. V., Cheng B. C. P., Lee T. M. C., Gin T. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. Journal of Neurosurgical Anesthesiology. 2013;25(1):33–42. doi: 10.1097/ANA.0b013e3182712fba.
    1. Ballard C., Jones E., Gauge N., et al. Optimised anaesthesia to reduce post operative cognitive decline (POCD) in older patients undergoing elective surgery, a randomised controlled trial. PLoS ONE. 2012;7(6) doi: 10.1371/journal.pone.0037410.e37410
    1. Papadopoulos G., Karanikolas M., Liarmakopoulou A., Papathanakos G., Korre M., Beris A. Cerebral oximetry and cognitive dysfunction in elderly patients undergoing surgery for hip fractures: A prospective observational study. The Open Orthopaedics Journal. 2012;6:400–405. doi: 10.2174/1874325001206010400.
    1. de Tournay-Jett E., Dupuis G., Bherer L., Deschamps A., Cartier R., Denault A. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. Journal of Cardiothoracic and Vascular Anesthesia. 2011;25(1):95–104. doi: 10.1053/j.jvca.2010.03.019.
    1. Lin R., Zhang F., Xue Q., Yu B. Accuracy of regional cerebral oxygen saturation in predicting postoperative cognitive dysfunction after total hip arthroplasty: regional cerebral oxygen saturation predicts POCD. Journal of Arthroplasty. 2013;28(3):494–497. doi: 10.1016/j.arth.2012.06.041.
    1. Zheng F., Sheinberg R., Yee M.-S., Ono M., Zheng Y., Hogue C. W. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesthesia & Analgesia. 2013;116(3):663–676. doi: 10.1213/ANE.0b013e318277a255.
    1. Tomaszewski D. Postoperative cognitive dysfunction (POCD) and markers of brain damage after big joints arthroplasty. In: Fokter S. K., editor. Recent Advances in Arthroplasty. Rijeka, Croatia: InTech; 2011. pp. 3–14.

Source: PubMed

3
Předplatit