Association of Matrix Metalloproteinase-9 (MMP9) Variants with Primary Angle Closure and Primary Angle Closure Glaucoma

Xueli Chen, Yuhong Chen, Janey L Wiggs, Louis R Pasquale, Xinghuai Sun, Bao Jian Fan, Xueli Chen, Yuhong Chen, Janey L Wiggs, Louis R Pasquale, Xinghuai Sun, Bao Jian Fan

Abstract

Shorter axial length observed in patients with primary angle closure glaucoma (PACG) might be due to altered matrix metalloproteinase-9 (MMP9) activity resulting in ECM remodeling during eye growth and development. This study aimed to evaluate common variants in MMP9 for association with PACG. Six tag SNPs of MMP9 were genotyped in a Chinese sample of 1,030 cases, including 572 PACG and 458 primary angle closure (PAC), and 499 controls. None of 6 SNPs were significantly associated with overall PAC/PACG (P > 0.07) or with PAC/PACG subgroups (Pc > 0.18). Meta-analysis of two non-Chinese studies revealed significant association between rs17576 and PACG (ORs = 0.56, P < 0.0001); however, meta-analysis of our dataset with 4 Chinese datasets did not replicate this association (ORs = 1.23, P = 0.29). Prior significant association for rs3918249 in one Caucasian study (OR = 0.63, P = 0.006) was not replicated in meta-analysis of 3 Chinese studies including this study (ORs = 0.91, P = 0.13). Significant heterogeneity between non-Chinese and Chinese datasets precluded overall meta-analysis for rs17576 and rs3918249 (Q = 0.001 and 0.04 respectively). rs17577 was nominally associated with PACG in one Caucasian study (OR = 1.71, P = 0.02), but not in 3 Chinese studies including our study (ORs = 1.20, P = 0.07). Overall meta-analysis revealed nominal association for rs17577 and PAC/PACG (ORs = 1.26, Pc = 0.05). Meta-analysis did not show significant association between the other SNPs and PAC/PACG (P > 0.47). The largest association study to date did not find significant association between MMP9 and PAC/PACG in Chinese; meta-analysis with other Chinese datasets did not produce significant association. In most instances combination with non-Chinese datasets was not possible except for one variant showing nominally significant association. More work is needed to define the role of MMP9 variants in PACG.

Conflict of interest statement

Competing Interests: The authors of this manuscript have read the journal's policy and have the following competing interests: LRP has been a speaker for Allergan. LRP also served as a paid consultant to Novartis and Bausch + Lomb. LRP has received support to travel to the Think Tank Meetings by the Glaucoma Foundation in NYC and travel to the Nantucket Glaucoma Meeting by Aerie Pharmaceuticals. All other authors declare no conflict of interest or financial interest in any of the issues contained in this article. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Linkage disequilibrium plot of the…
Fig 1. Linkage disequilibrium plot of the 6 tag SNPs around MMP9 in the Chinese dataset of this study.
The numbers in the diamond indicate r2; black represented r2 = 1, shades of grey indicated 0< r2 <1, and white referred to r2 = 0. Chromosomal positions were based on NCBI build 36.3 (National Center for Biotechnology Information, Bethesda, MD).
Fig 2. Meta-analysis with prior studies of…
Fig 2. Meta-analysis with prior studies of the association between rs17576 and PAC/PACG.
Odds ratio was calculated per each increase in minor allele A. The summary odds ratio was 0.56 (95% CI: 0.42–0.74) for the non-Chinese populations and 1.23 (95% CI: 0.83–1.82) for the Chinese populations. Significant heterogeneity between the non-Chinese and Chinese populations precluded an overall meta-analysis for rs17576 (Q = 0.001, I2 = 90%). The Bonferroni corrected significance level was set as 0.01 (0.05/5).
Fig 3. Meta-analysis with prior studies of…
Fig 3. Meta-analysis with prior studies of the association between rs3918249 and PAC/PACG.
Odds ratio was calculated per each increase in minor allele T. The summary odds ratio was 0.63 (95% CI: 0.45–0.88) for the Caucasian population and 0.91 (95% CI: 0.80–1.03) for the Chinese populations. Significant heterogeneity between the Caucasian and Chinese populations precluded an overall meta-analysis for rs3918249 (Q = 0.04, I2 = 75%). The Bonferroni corrected significance level was set as 0.01 (0.05/5).
Fig 4. Meta-analysis with prior studies of…
Fig 4. Meta-analysis with prior studies of the association between rs17577 and PAC/PACG.
Odds ratio was calculated per each increase in minor allele A. The summary odds ratio was 1.71 (95% CI: 1.09–2.67) for the Caucasian population, 1.20 (95% CI: 0.99–1.45) for the Chinese populations, and 1.26 (95%CI: 1.06–1.50) for the combined Caucasian + Chinese populations, respectively. The odds ratios between the Caucasian and Chinese datasets were not significantly heterogeneous (Q = 0.15, I2 = 52%). The Bonferroni corrected significance level was set as 0.01 (0.05/5).

References

    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90: 262–267.
    1. Quigley HA, Congdon NG, Friedman DS. Glaucoma in China (and worldwide): changes in established thinking will decrease preventable blindness. Br J Ophthalmol. 2001; 85: 1271–1272.
    1. Cheng JW, Zong Y, Zeng YY, Wei RL. The prevalence of primary angle closure glaucoma in adult Asians: a systematic review and meta-analysis. PLoS One. 2014; 9: e103222 10.1371/journal.pone.0103222
    1. Day AC, Baio G, Gazzard G, Bunce C, Azuara-Blanco A, Munoz B, et al. The prevalence of primary angle closure glaucoma in European derived populations: a systematic review. Br J Ophthalmol. 2012; 96: 1162–1167. 10.1136/bjophthalmol-2011-301189
    1. Lowe RF. Primary angle-closure glaucoma. Inheritance and environment. Br. J. Ophthalmol. 1972; 56: 13–20.
    1. Amerasinghe N, Zhang J, Thalamuthu A, He M, Vithana EN, Viswanathan A, et al. The heritability and sibling risk of angle closure in Asians. Ophthalmology. 2011; 118: 480–485. 10.1016/j.ophtha.2010.06.043
    1. Nongpiur ME, Khor CC, Jia H, Cornes BK, Chen LJ, Qiao C, et al. ABCC5, a gene that influences the anterior chamber depth, is associated with primary angle closure glaucoma. PLoS Genet. 2014; 10: e1004089 10.1371/journal.pgen.1004089
    1. Vithana EN, Khor CC, Qiao C, Nongpiur ME, George R, Chen LJ, et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2012; 44: 1142–1146. 10.1038/ng.2390
    1. Rong SS, Tang FY, Chu WK, Ma L, Yam JC, Tang SM, et al. Genetic Associations of Primary Angle-Closure Disease: A Systematic Review and Meta-analysis. Ophthalmology. 2016. February 4 pii: S0161-6420(15)01530-4. 10.1016/j.ophtha.2015.12.027 [Epub ahead of print] .
    1. Wang IJ, Chiang TH, Shih YF, Lu SC, Lin LL, Shieh JW, et al. The association of single nucleotide polymorphisms in the MMP-9 genes with susceptibility to acute primary angle closure glaucoma in Taiwanese patients. Mol Vis. 2006; 12: 1223–1232.
    1. Aung T, Yong VH, Lim MC, Venkataraman D, Toh JY, Chew PT, et al. Lack of association between the rs2664538 polymorphism in the MMP-9 gene and primary angle closure glaucoma in Singaporean subjects. J Glaucoma. 2008;17: 257–258. 10.1097/IJG.0b013e31815c3aa5
    1. Cong Y, Guo X, Liu X, Cao D, Jia X, Xiao X, et al. Association of the single nucleotide polymorphisms in the extracellular matrix metalloprotease-9 gene with PACG in southern China. Mol Vis. 2009; 15: 1412–1417.
    1. Shi H, Zhu R, Hu N, Shi J, Zhang J, Jiang L, et al. Association of frizzled-related protein (MFRP) and heat shock protein 70 (HSP70) single nucleotide polymorphisms with primary angle closure in a Han Chinese population: Jiangsu Eye Study. Mol Vis. 2013; 19: 128–134.
    1. Gao XJ, Hou SP, Li PH. The association between matrix metalloprotease-9 gene polymorphisms and primary angle-closure glaucoma in a Chinese Han population. Int J Ophthalmol. 2014; 7: 397–402. 10.3980/j.issn.2222-3959.2014.03.02
    1. Awadalla MS, Burdon KP, Kuot A, Hewitt AW, Craig JE. Matrix metalloproteinase-9 genetic variation and primary angle closure glaucoma in a Caucasian population. Mol Vis. 2011; 17: 1420–1424.
    1. Micheal S, Yousaf S, Khan MI, Akhtar F, Islam F, Khan WA, et al. Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population. Mol Vis. 2013; 19: 441–447.
    1. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002; 86: 238–242.
    1. Lee KY, Rensch F, Aung T, Lim LS, Husain R, Gazzard G, et al. Peripapillary atrophy after acute primary angle closure. Br J Ophthalmol. 2007; 91: 1059–1061.
    1. Alsagoff Z, Aung T, Ang LP, Chew PT. Long-term clinical course of primary angle-closure glaucoma in an Asian population. Ophthalmology. 2000; 107: 2300–2304.
    1. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21: 263–265.
    1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81: 559–575.
    1. Fan BJ, Liu K, Wang DY, Tham CC, Tam PO, Lam DS, et al. Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010; 51: 4110–4116. 10.1167/iovs.09-4974
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327: 557–560.
    1. Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003; 19: 149–150.
    1. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010; 467: 1061–1073. 10.1038/nature09534
    1. R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria: 2015. Available: .
    1. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999; 274: 21491–21494.
    1. Zhang B, Henney A, Eriksson P, Hamsten A, Watkins H, Ye S. Genetic variation at the matrix metalloproteinase-9 locus on chromosome 20q12.2–13.1. Hum Genet. 1999; 105: 418–423.
    1. Lin PI, Vance JM, Pericak-Vance MA, Martin ER. No gene is an island: the flip-flop phenomenon. Am J Hum Genet. 2007; 80: 531–538.
    1. Williams SE, Whigham BT, Liu Y, Carmichael TR, Qin X, Schmidt S, et al. Major LOXL1 risk allele is reversed in exfoliation glaucoma in a black South African population. Mol Vis. 2010; 16: 705–712.
    1. Dubey SK, Hejtmancik JF, Krishnadas SR, Sharmila R, Haripriya A, Sundaresan P. Lysyl oxidase-like 1 gene in the reversal of promoter risk allele in pseudoexfoliation syndrome. JAMA Ophthalmol. 2014; 132: 949–955. 10.1001/jamaophthalmol.2014.845
    1. Wang L, Yu Y, Fu S, Zhao W, Liu P. LOXL1 gene polymorphism with exfoliation syndrome/exfoliation glaucoma: a meta-analysis. J Glaucoma. 2016; 25: 62–94. 10.1097/IJG.0000000000000128

Source: PubMed

3
Předplatit