Spatio-temporal gait parameters obtained from foot-worn inertial sensors are reliable in healthy adults in single- and dual-task conditions

J Soulard, J Vaillant, R Balaguier, N Vuillerme, J Soulard, J Vaillant, R Balaguier, N Vuillerme

Abstract

Inertial measurement units (IMUs) are increasingly popular and may be usable in clinical routine to assess gait. However, assessing their intra-session reliability is crucial and has not been tested with foot-worn sensors in healthy participants. The aim of this study was to assess the intra-session reliability of foot-worn IMUs for measuring gait parameters in healthy adults. Twenty healthy participants were enrolled in the study and performed the 10-m walk test in single- and dual-task ('carrying a full cup of water') conditions, three trials per condition. IMUs were used to assess spatiotemporal gait parameters, gait symmetry parameters (symmetry index (SI) and symmetry ratio (SR)), and dual task effects parameters. The relative and the absolute reliability were calculated for each gait parameter. Results showed that spatiotemporal gait parameters measured with foot-worn inertial sensors were reliable; symmetry gait parameters relative reliability was low, and SR showed better absolute reliability than SI; dual task effects were poorly reliable, and taking the mean of the second and the third trials was the most reliable. Foot-worn IMUs are reliable to assess spatiotemporal and symmetry ratio gait parameters but symmetry index and DTE gait parameters reliabilities were low and need to be interpreted with cautious by clinicians and researchers.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Intraclass correlation coefficients calculated with the means of trial 1–2, 1–3, 2–3 and 1–2-3 in single-task (a) and dual-task (b) conditions; Dotted color lines correspond to relative reliability thresholds with: slight (black: 0.00 < ICC < 0.2), fair (red: 0.21 < ICC < 0.4), moderate (orange: 0.41 < ICC < 0.6), substantial (yellow: 0.61 < ICC < 0.8), and almost perfect (green: 0.81 < ICC < 1.0) reliability. Abbreviations: LDr = Load Ratio, FFr = Foot Flat ratio, PUr = Push ratio, nprm = normalized, SI = symmetry index, SR = symmetry ratio, slength = stride length
Figure 2
Figure 2
Bland and Altman plots for speed, stride length and cadence in single task (blue) and dual task (red) and for speed, stride length and cadence for trial 1 and 2, 1 and 3 and 2 and 3.

References

    1. Bouisset S, Maton B. Muscles, Posture et Mouvement: Bases et Applications de la Méthode Électromyographique. Paris: Hermann; 1996.
    1. Abu-Faraj, Z., Harris, G., Smith, P. & Hassani, S. Human Gait and Clinical Movement Analysis. in 1–34 (2015). 10.1002/047134608X.W6606.pub2.
    1. Kobsar D, et al. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020;17:62. doi: 10.1186/s12984-020-00685-3.
    1. Simon SR. Quantification of human motion: Gait analysis-benefits and limitations to its application to clinical problems. J. Biomech. 2004;37:1869–1880. doi: 10.1016/j.jbiomech.2004.02.047.
    1. Baker R. Gait analysis methods in rehabilitation. J. NeuroEngin. Rehabil. 2006;3:4. doi: 10.1186/1743-0003-3-4.
    1. Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices. 2016;13:641–659. doi: 10.1080/17434440.2016.1198694.
    1. Sabatini AM, Martelloni C, Scapellato S, Cavallo F. Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 2005;52:486–494. doi: 10.1109/TBME.2004.840727.
    1. Sadeghi H. Local or global asymmetry in gait of people without impairments. Gait Posture. 2003;17:197–204. doi: 10.1016/S0966-6362(02)00089-9.
    1. Błażkiewicz M, Wiszomirska I, Wit A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 2014;16:29–35.
    1. Mariani B, Rouhani H, Crevoisier X, Aminian K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture. 2013;37:229–234. doi: 10.1016/j.gaitpost.2012.07.012.
    1. Lachin JM. The role of measurement reliability in clinical trials. Clin. Trials Lond. Engl. 2004;1:553–566. doi: 10.1191/1740774504cn057oa.
    1. Wedege P, Steffen K, Strøm V, Opheim AI. Reliability of three-dimensional kinematic gait data in adults with spinal cord injury. J. Rehabil. Assist. Technol. Eng. 2017;4:2055668317729992.
    1. Hamacher D, Hamacher D, Taylor WR, Singh NB, Schega L. Towards clinical application: Repetitive sensor position re-calibration for improved reliability of gait parameters. Gait Posture. 2014;39:1146–1148. doi: 10.1016/j.gaitpost.2014.01.020.
    1. Sijobert B, et al. Implementation and validation of a stride length estimation algorithm, using a single basic inertial sensor on healthy subjects and patients suffering from Parkinson’s disease. Health (N. Y.) 2015;7:704–714.
    1. Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017;55:87–93. doi: 10.1016/j.gaitpost.2017.04.013.
    1. Kitagawa N, Ogihara N. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot. Gait Posture. 2016;45:110–114. doi: 10.1016/j.gaitpost.2016.01.014.
    1. Mariani B, Rochat S, Büla CJ, Aminian K. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. IEEE Trans. Biomed. Eng. 2012;59:3162–3168. doi: 10.1109/TBME.2012.2216263.
    1. Benoussaad M, Sijobert B, Mombaur K, Azevedo Coste C. Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors. 2015;16:12. doi: 10.3390/s16010012.
    1. Mariani B, et al. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010;43:2999–3006. doi: 10.1016/j.jbiomech.2010.07.003.
    1. Brégou Bourgeois A, Mariani B, Aminian K, Zambelli PY, Newman CJ. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture. 2014;39:436–442. doi: 10.1016/j.gaitpost.2013.08.029.
    1. Mariani B, Jiménez MC, Vingerhoets FJG, Aminian K. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 2013;60:155–158. doi: 10.1109/TBME.2012.2227317.
    1. Lefeber N, Degelaen M, Truyers C, Safin I, Beckwee D. Validity and reproducibility of inertial physilog sensors for spatiotemporal gait analysis in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2019;27:1865–1874.
    1. McIsaac, T. L., Lamberg, E. M. & Muratori, L. M. Building a Framework for a Dual Task Taxonomy. BioMed Research International (2015).
    1. Yang L, Liao LR, Lam FMH, He CQ, Pang MYC. Psychometric properties of dual-task balance assessments for older adults: A systematic review. Maturitas. 2015;80:359–369. doi: 10.1016/j.maturitas.2015.01.001.
    1. Beauchet O, et al. Stops walking when talking: A predictor of falls in older adults? Eur. J. Neurol. 2009;16:786–795. doi: 10.1111/j.1468-1331.2009.02612.x.
    1. Yang L, He C, Pang MYC. Reliability and validity of dual-task mobility assessments in people with chronic stroke. PLoS ONE. 2016;11(1):e0147833. doi: 10.1371/journal.pone.0147833.
    1. Hillel I, et al. Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur. Rev. Aging Phys. Act. 2019;16:6. doi: 10.1186/s11556-019-0214-5.
    1. Kikkert LHJ, et al. Gait characteristics and their discriminative power in geriatric patients with and without cognitive impairment. J. Neuroeng. Rehabil. 2017;14:84. doi: 10.1186/s12984-017-0297-z.
    1. Tyson S, Connell L. The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: A systematic review. Clin. Rehabil. 2009;23:1018–1033. doi: 10.1177/0269215509339004.
    1. Stephens JM, Goldie PA. Walking speed on parquetry and carpet after stroke: Effect of surface and retest reliability. Clin. Rehabil. 1999;13:171–181. doi: 10.1191/026921599668553798.
    1. Soulard J, et al. Gait as predictor of physical function in axial spondyloarthritis: The prospective longitudinal FOLOMI (Function, Locomotion, Measurement, Inflammation) study protocol. Rheumatol. Int. 2019 doi: 10.1007/s00296-019-04396-4.
    1. Wüest S, Massé F, Aminian K, Gonzenbach R, de Bruin ED. Reliability and validity of the inertial sensor-based Timed ‘Up and Go’ test in individuals affected by stroke. J. Rehabil. Res. Dev. 2016;53:599–610. doi: 10.1682/JRRD.2015.04.0065.
    1. Gerber CN, Carcreff L, Paraschiv-Ionescu A, Armand S, Newman CJ. Reliability of single-day walking performance and physical activity measures using inertial sensors in children with cerebral palsy. Ann. Phys. Rehabil. Med. 2019 doi: 10.1016/j.rehab.2019.02.003.
    1. Rudwaleit M, et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: A consensual approach by the ASAS/OMERACT MRI group. Ann. Rheum. Dis. 2009;68:1520–1527. doi: 10.1136/ard.2009.110767.
    1. Pinzone O, Schwartz MH, Baker R. Comprehensive non-dimensional normalization of gait data. Gait Posture. 2016;44:68–73. doi: 10.1016/j.gaitpost.2015.11.013.
    1. Graham JE, Ostir GV, Fisher SR, Ottenbacher KJ. Assessing walking speed in clinical research: A systematic review. J. Eval. Clin. Pract. 2008;14:552–562. doi: 10.1111/j.1365-2753.2007.00917.x.
    1. Beauchet O, et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and Canadian gait consortiums initiative. Front. Hum. Neurosci. 2017;11:353. doi: 10.3389/fnhum.2017.00353.
    1. Kwon Y, Kwon JW, Cho IH. The difference of gait characteristic according to the variety of dual tasks in young healthy adults. Work Read. Mass. 2019;63:33–38.
    1. Dadashi F, et al. Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors. 2014;14:443–457. doi: 10.3390/s140100443.
    1. Truong PH, Lee J, Kwon A-R, Jeong G-M. Stride counting in human walking and walking distance estimation using insole sensors. Sensors. 2016;16:823. doi: 10.3390/s16060823.
    1. Anwary AR, Yu H, Vassallo M. An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors. 2018;18:676. doi: 10.3390/s18020676.
    1. Hof A. Scaling gait data to body size. Gait Posture. 1996;4:222–223. doi: 10.1016/0966-6362(95)01057-2.
    1. Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE. Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization. Gait Posture. 2010;31:241–246. doi: 10.1016/j.gaitpost.2009.10.014.
    1. Lauziere S, Betschart M, Aissaoui R, Nadeau S. Understanding Spatial and Temporal Gait Asymmetries in Individuals Post Stroke. Int. J. Phys. Med. Rehabil. 2014;2:1–11.
    1. Kelly VE, Janke AA, Shumway-Cook A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp. Brain Res. Exp. Hirnforsch. Exp. Cerebrale. 2010;207:65–67. doi: 10.1007/s00221-010-2429-6.
    1. Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 2018;71:353–360. doi: 10.4097/kja.d.18.00242.
    1. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Harvill LM. Standard error of measurement. Educ. Meas. Issues Pract. 1991;10:33–41. doi: 10.1111/j.1745-3992.1991.tb00195.x.
    1. Walton DM, et al. Reliability, standard error, and minimum detectable change of clinical pressure pain threshold testing in people with and without acute neck pain. J. Orthop. Sports Phys. Ther. 2011;41:644–650. doi: 10.2519/jospt.2011.3666.
    1. Bourke AK, Scotland A, Lipsmeier F, Gossens C, Lindemann M. Gait characteristics harvested during a smartphone-based self-administered 2-minute walk test in people with multiple sclerosis: Test–retest reliability and minimum detectable change. Sensors. 2020;20:5906. doi: 10.3390/s20205906.
    1. Huang S-L, Hsieh C-L, Wu R-M, Lu W-S. Test–retest reliability and minimal detectable change of the beck depression inventory and the Taiwan geriatric depression scale in patients with Parkinson’s disease. PLoS ONE. 2017;12(9):e0184823. doi: 10.1371/journal.pone.0184823.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond. Engl. 1986;1:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Reynard F, Terrier P. Local dynamic stability of treadmill walking: Intrasession and week-to-week repeatability. J. Biomech. 2014;47:74–80. doi: 10.1016/j.jbiomech.2013.10.011.
    1. Cabral, S. Gait Symmetry Measures and Their Relevance to Gait Retraining. In Handbook of Human Motion 429–447 (Springer International Publishing, 2018). 10.1007/978-3-319-14418-4_201.
    1. Kodesh E, Kafri M, Dar G, Dickstein R. Walking speed, unilateral leg loading, and step symmetry in young adults. Gait Posture. 2012;35:66–69. doi: 10.1016/j.gaitpost.2011.08.008.
    1. Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: When does the bilateral coordination of gait require attention? Exp. Brain Res. 2007;177:336–346. doi: 10.1007/s00221-006-0676-3.
    1. Mattes SJ, Martin PE, Royer TD. Walking symmetry and energy cost in persons with unilateral transtibial amputations: Matching prosthetic and intact limb inertial properties. Arch. Phys. Med. Rehabil. 2000;81:561–568. doi: 10.1016/S0003-9993(00)90035-2.
    1. Mills K, Hettinga BA, Pohl MB, Ferber R. Between-limb kinematic asymmetry during gait in unilateral and bilateral mild to moderate knee osteoarthritis. Arch. Phys. Med. Rehabil. 2013;94:2241–2247. doi: 10.1016/j.apmr.2013.05.010.
    1. Tsai T-Y, et al. Asymmetric hip kinematics during gait in patients with unilateral total hip arthroplasty: In vivo 3-dimensional motion analysis. J. Biomech. 2015;48:555–559. doi: 10.1016/j.jbiomech.2015.01.021.
    1. Winiarski S, Czamara A. Evaluation of gait kinematics and symmetry during the first two stages of physiotherapy after anterior cruciate ligament reconstruction. Acta Bioeng. Biomech. 2012;14:91–100.
    1. Rudroff T, Proessl F. Effects of muscle function and limb loading asymmetries on gait and balance in people with multiple sclerosis. Front. Physiol. 2018;9:531. doi: 10.3389/fphys.2018.00531.
    1. Kernozek TW, Greany JF, Heizler C. Plantar loading asymmetry in American Indians with diabetes and peripheral neuropathy, with diabetes only, and without diabetes. J. Am. Podiatr. Med. Assoc. 2013;103:106–112. doi: 10.7547/1030106.
    1. Mc Ardle R, Galna B, Donaghy P, Thomas A, Rochester L. Do Alzheimer’s and Lewy body disease have discrete pathological signatures of gait? Alzheimers Dement. J. Alzheimers Assoc. 2019;15:1367–1377. doi: 10.1016/j.jalz.2019.06.4953.
    1. Orcioli-Silva D, et al. Double obstacles increase gait asymmetry during obstacle crossing in people with Parkinson’s disease and healthy older adults: A pilot study. Sci. Rep. 2020;10:2272. doi: 10.1038/s41598-020-59266-y.
    1. Fling BW, Curtze C, Horak FB. Gait asymmetry in people with Parkinson’s disease is linked to reduced integrity of callosal sensorimotor regions. Front. Neurol. 2018;9:215. doi: 10.3389/fneur.2018.00215.
    1. Oken O, Yavuzer G. Spatio-temporal and kinematic asymmetry ratio in subgroups of patients with stroke. Eur. J. Phys. Rehabil. Med. 2008;44:127–132.
    1. Wei T-S, Liu P-T, Chang L-W, Liu S-Y. Gait asymmetry, ankle spasticity, and depression as independent predictors of falls in ambulatory stroke patients. PLoS ONE. 2017;12:e0177136. doi: 10.1371/journal.pone.0177136.
    1. Alharbi, S. Gait asymmetry and the risk of knee osteoarthritis in post-stroke individuals. (University of Salford, 2019).
    1. Patterson KK, et al. Gait asymmetry in community-ambulating stroke survivors. Arch. Phys. Med. Rehabil. 2008;89:304–310. doi: 10.1016/j.apmr.2007.08.142.
    1. Lloyd CH, Stanhope SJ, Davis IS, Royer TD. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture. 2010;32:296–300. doi: 10.1016/j.gaitpost.2010.05.003.
    1. Adamczyk PG, Kuo AD. Mechanisms of gait asymmetry due to push-off deficiency in unilateral amputees. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2015;23:776–785.
    1. Heil J, Loffing F, Büsch D. The influence of exercise-induced fatigue on inter-limb asymmetries: A systematic review. Sports Med. Open. 2020;6:39. doi: 10.1186/s40798-020-00270-x.
    1. Jung J, Choi W, Lee S. Immediate augmented real-time forefoot weight bearing using visual feedback improves gait symmetry in chronic stroke. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2020;28:733–741.
    1. Rozanski GM, Wong JS, Inness EL, Patterson KK, Mansfield A. Longitudinal change in spatiotemporal gait symmetry after discharge from inpatient stroke rehabilitation. Disabil. Rehabil. 2020;42:705–711. doi: 10.1080/09638288.2018.1508508.
    1. Drużbicki M, et al. Changes in gait symmetry after training on a treadmill with biofeedback in chronic stroke patients: A 6-month follow-up from a randomized controlled trial. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016;22:4859–4868.
    1. Plotnik M, Wagner JM, Adusumilli G, Gottlieb A, Naismith RT. Gait asymmetry, and bilateral coordination of gait during a six-minute walk test in persons with multiple sclerosis. Sci. Rep. 2020;10:12382. doi: 10.1038/s41598-020-68263-0.
    1. Highsmith MJ, et al. Gait Training interventions for lower extremity amputees: A systematic literature review. Technol. Innov. 2016;18:99–113. doi: 10.21300/18.2-3.2016.99.
    1. Alingh JF, Groen BE, Van Asseldonk EHF, Geurts ACH, Weerdesteyn V. Effectiveness of rehabilitation interventions to improve paretic propulsion in individuals with stroke–a systematic review. Clin. Biomech. Bristol Avon. 2020;71:176–188. doi: 10.1016/j.clinbiomech.2019.10.021.
    1. Frazzitta G, Pezzoli G, Bertotti G, Maestri R. Asymmetry and freezing of gait in parkinsonian patients. J. Neurol. 2013;260:71–76. doi: 10.1007/s00415-012-6585-4.
    1. Ricciardi L, et al. Working on asymmetry in Parkinson’s disease: Randomized, controlled pilot study. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2015;36:1337–1343.
    1. Viteckova S, et al. Gait symmetry measures: A review of current and prospective methods. Biomed. Signal Process. Control. 2018;42:89–100. doi: 10.1016/j.bspc.2018.01.013.
    1. Venema DM, Hansen H, High R, Goetsch T, Siu K-C. Minimal detectable change in dual-task cost for older adults with and without cognitive impairment. J. Geriatr. Phys. Ther. 2018 doi: 10.1519/JPT.0000000000000194.
    1. Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M. The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J. Gerontol. A. Biol. Sci. Med. Sci. 1997;52:M232–240. doi: 10.1093/gerona/52A.4.M232.
    1. Bloem BR, Grimbergen YAM, van Dijk JG, Munneke M. The, “posture second” strategy: A review of wrong priorities in Parkinson’s disease. J. Neurol. Sci. 2006;248:196–204. doi: 10.1016/j.jns.2006.05.010.
    1. Smith E, Cusack T, Cunningham C, Blake C. The influence of a cognitive dual task on the gait parameters of healthy older adults: A systematic review and meta-analysis. J. Aging Phys. Act. 2017;25:671–686. doi: 10.1123/japa.2016-0265.
    1. Hunter SW, Divine A, Frengopoulos C, Montero Odasso M. A framework for secondary cognitive and motor tasks in dual-task gait testing in people with mild cognitive impairment. BMC Geriatr. 2018;18:202. doi: 10.1186/s12877-018-0894-0.
    1. Al-Yahya E, et al. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011;35:715–728. doi: 10.1016/j.neubiorev.2010.08.008.
    1. Santos Nogueira D, Azevedo Reis E, Vieira A. Verbal fluency tasks: Effects of age, gender, and education. Folia Phoniatr. Logop. Off. Organ Int. Assoc. Logop. Phoniatr. IALP. 2016;68:124–133. doi: 10.1159/000450640.
    1. Brown KC, et al. Gait speed and variability for usual pace and pedestrian crossing conditions in older adults using the GAITRite walkway. Gerontol. Geriatr. Med. 2015 doi: 10.1177/2333721415618858.
    1. Jonathan A, et al. Gait speed and 1-year mortality following cardiac surgery: A landmark analysis from the society of thoracic surgeons adult cardiac surgery database. J. Am. Heart Assoc. 2018;7:e010139.
    1. Fransen M, Crosbie J, Edmonds J. Reliability of gait measurements in people with osteoarthritis of the knee. Phys. Ther. 1997;77:944–953. doi: 10.1093/ptj/77.9.944.
    1. Brach JS, Perera S, Studenski S, Newman AB. The reliability and validity of measures of gait variability in community-dwelling older adults. Arch. Phys. Med. Rehabil. 2008;89:2293–2296. doi: 10.1016/j.apmr.2008.06.010.
    1. Byun S, Han JW, Kim TH, Kim KW. Test-retest reliability and concurrent validity of a single tri-axial accelerometer-based gait analysis in older adults with normal cognition. PLoS ONE. 2016;11:e0158956. doi: 10.1371/journal.pone.0158956.
    1. Beurskens R, Steinberg F, Antoniewicz F, Wolff W, Granacher U. Neural correlates of dual-task walking: Effects of cognitive versus motor interference in young adults. Neural Plast. 2016;2016:8032180. doi: 10.1155/2016/8032180.
    1. Stöckel T, Mau-Moeller A. Cognitive control processes associated with successful gait performance in dual-task walking in healthy young adults. Psychol. Res. 2020;84:1766–1776. doi: 10.1007/s00426-019-01184-4.
    1. Holtzer R, Epstein N, Mahoney JR, Izzetoglu M, Blumen HM. Neuroimaging of mobility in aging: A targeted review. J. Gerontol. A. Biol. Sci. Med. Sci. 2014;69:1375–1388. doi: 10.1093/gerona/glu052.
    1. Yang Q, et al. Gait change in dual task as a behavioral marker to detect mild cognitive impairment in elderly persons: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2020;101:1813–1821. doi: 10.1016/j.apmr.2020.05.020.
    1. Yogev-Seligmann, G., Hausdorff, J. M. & Giladi, N. The role of executive function and attention in gait. Mov. Disord. Off. J. Mov. Disord. Soc.23, 329–342; quiz 472 (2008).
    1. Kikkert LHJ, Vuillerme N, van Campen JP, Hortobágyi T, Lamoth CJ. Walking ability to predict future cognitive decline in old adults: A scoping review. Ageing Res. Rev. 2016;27:1–14. doi: 10.1016/j.arr.2016.02.001.
    1. Quan M, et al. Walking pace and the risk of cognitive decline and dementia in elderly populations: A meta-analysis of prospective cohort studies. J. Gerontol. A. Biol. Sci. Med. Sci. 2017;72:266–270. doi: 10.1093/gerona/glw121.
    1. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420.
    1. Kluge F, et al. Towards mobile gait analysis: Concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors. 2017;17:1522. doi: 10.3390/s17071522.
    1. Hollman JH, et al. Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture. 2010;32:23–28. doi: 10.1016/j.gaitpost.2010.02.017.

Source: PubMed

3
Předplatit