Viraemia, immunogenicity, and survival outcomes of cytomegalovirus chimeric epitope vaccine supplemented with PF03512676 (CMVPepVax) in allogeneic haemopoietic stem-cell transplantation: randomised phase 1b trial

Ryotaro Nakamura, Corinna La Rosa, Jeffrey Longmate, Jennifer Drake, Cynthia Slape, Qiao Zhou, Melanie G Lampa, Margaret O'Donnell, Ji-Lian Cai, Len Farol, Amandeep Salhotra, David S Snyder, Ibrahim Aldoss, Stephen J Forman, Jeffrey S Miller, John A Zaia, Don J Diamond, Ryotaro Nakamura, Corinna La Rosa, Jeffrey Longmate, Jennifer Drake, Cynthia Slape, Qiao Zhou, Melanie G Lampa, Margaret O'Donnell, Ji-Lian Cai, Len Farol, Amandeep Salhotra, David S Snyder, Ibrahim Aldoss, Stephen J Forman, Jeffrey S Miller, John A Zaia, Don J Diamond

Abstract

Background: Patients seropositive for cytomegalovirus (CMV) and undergoing allogeneic haemopoietic stem-cell transplantation (HCT) are at risk for CMV reactivation. Stimulating viral immunity by vaccination might achieve CMV viraemia control without the need for antiviral agents. CMVPepVax is a chimeric peptide composed of a cytotoxic CD8 T-cell epitope from CMV pp65 and a tetanus T-helper epitope. It is formulated with the adjuvant PF03512676, a Toll-like receptor 9 agonist, which augments cellular immunity. We aimed to assess safety, immunogenicity, and possible clinical benefit of the CMVPepVax vaccine in patients undergoing HCT.

Methods: We did a randomised, open-label, phase 1b trial at one transplant centre in the USA. Eligible patients were CMV-seropositive, positive for HLA-A*0201, aged 18-75 years, and undergoing HCT from a matched-related or matched-unrelated donor. Patients were reassessed for eligibility on day 28 after HCT. We randomly allocated patients to either the CMVPepVax vaccine or observation, in blocks stratified by CMV donor serostatus. CMVPepVax was administered subcutaneously on days 28 and 56. The primary outcome was safety, which consisted of secondary graft failure, grade III-IV acute GVHD, non-relapse mortality by day 100, serious adverse events related to the vaccine (judged by the data and safety monitoring committee [DSMC]) grade 3-4 adverse events related to the vaccine (judged by the DSMC) within 2 weeks of vaccination, and development of double-strand (ds) DNA autoantibodies. Statistical analyses included all randomised patients and were done per-protocol. This study is registered with ClinicalTrials.gov, number NCT01588015. This trial is closed to accrual and the final analysis is presented in this report.

Findings: Between Oct 31, 2012, and Nov 5, 2014, 36 eligible patients were allocated to either CMVPepVax (n=18) or observation (n=18), with no adverse effect on HCT (no secondary graft failures in either group) or cases of acute GVHD (seven patients assigned vaccine and six under observation had acute GVHD of grade 2 or less), and no unexpected adverse events. Compared with observation, better relapse-free survival was recorded in patients allocated the vaccine (seven vs one; hazard ratio [HR] 0·12, 95% CI 0·01-0·94; p=0·015). No patients had non-relapse mortality by day 100. One serious adverse event (grade 1 fever) was attributed to CMVPepVax but resolved within 48 h. Four patients assigned the vaccine had a serious adverse event, which was unrelated to the vaccine (grade 3 thrombocytopenia, grade 3 device-related infection, grade 2 nausea, and grade 1 fever), compared with nine patients under observation (grade 4 maculopapular rash, grade 3 nausea, grade 3 infection, grade 3 thrombotic thrombocytopenic purpurea, grade 2 nausea, grade 2 generalised muscle weakness, grade 2 infection, grade 1 fever, and grade 1 fatigue; p=0·16). 54 grade 3-4 adverse events were reported in patients assigned the vaccine compared with 91 in patients who were under observation (p=0·2). No patients had grade III-IV acute GVHD or developed dsDNA autoantibodies.

Interpretation: The results show safety and immunogenicity of the CMVPepVax vaccine. The prospect of substantial clinical benefits warrant testing in a phase 2 trial.

Funding: National Cancer Institute.

Conflict of interest statement

Conflicts of interest

The other authors declare no conflict of interest.

Copyright © 2016 Elsevier Ltd. All rights reserved.

Figures

Figure 1. Trial profile
Figure 1. Trial profile
Figure 2. Relapse free survival
Figure 2. Relapse free survival
Kaplan-Meier estimates of RFS in VA and OA recipients, followed up to May 31, 2015. Relative hazard (Rel Haz) estimate is shown with 95% CI (0·01–0·94), and 2-sided log-rank p-value. N=number
Figure 3. Levels of pp65 495–503 -specific…
Figure 3. Levels of pp65495–503-specific CD8 T cells
Individual time courses of pp65495–503-specific CD8 T cell levels are shown with solid lines for VA patients, and dashed lines for OA patients. Pairs of boxplots show pp65495–503-specific CD8 T cell/µl in the VA (v) and OA (o), assessed using pentamer technology, and analysed by FACS Central bars show median; boxes cover central 50% of observations; whiskers extend to at most 1.5 times box length. CMVPepVax was administered on days 28 and 56 to the VA patients. All recipients who did not have CMV reactivation (17 VA patients, and 12 OA patients) were included in this plot.
Figure 4. CMV reactivation rate
Figure 4. CMV reactivation rate
Kaplan-Meier estimates of CMV reactivation rate in VA and OA recipients, followed for at least 6 months post-HCT. Relative hazard (Rel Haz) estimate is shown with 95% CI (0·02–1·1), and 2-sided log-rank p-value. N=number

References

    1. Bosch M, Khan FM, Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol. 2012;19(4):324–335.
    1. Ljungman P, Hakki M, Boeckh M. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol Oncol Clin North Am. 2011;25(1):151–169.
    1. Ramanathan MTP, Battiwalla M, et al. Early CMV reactivation still remains a cause of increased transplant related mortality in the current era: A CIBMTR analysis. Blood. 2014;124(21):47. (abstr)
    1. Green ML, Leisenring W, Stachel D, et al. Efficacy of a viral load-based, risk-adapted, preemptive treatment strategy for prevention of cytomegalovirus disease after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18(11):1687–1699.
    1. Peggs KS, Verfuerth S, Pizzey A, Chow SL, Thomson K, Mackinnon S. Cytomegalovirus-specific T cell immunotherapy promotes restoration of durable functional antiviral immunity following allogeneic stem cell transplantation. Clin Infect Dis. 2009;49(12):1851–1860.
    1. Stemberger C, Graef P, Odendahl M, et al. Lowest numbers of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood. 2014;124(4):628–637.
    1. Feuchtinger T, Opherk K, Bethge WA, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):4360–4367.
    1. Sylwester AW, Mitchell BL, Edgar JB, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673–685.
    1. Hanley PJ, Melenhorst JJ, Nikiforow S, et al. CMV-specific T cells generated from naive T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med. 2015;7(285):285ra63.
    1. Chalandon Y, Degermann S, Villard J, et al. Pretransplantation CMV-specific T cells protect recipients of T-cell-depleted grafts against CMV-related complications. Blood. 2006;107(1):389–396.
    1. Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: a global perspective. Preface. Bone Marrow Transplant. 2009;44(8):453–455.
    1. Gratama JW, Boeckh M, Nakamura R, et al. Immune monitoring with iTAg MHC Tetramers for prediction of recurrent or persistent cytomegalovirus infection or disease in allogeneic hematopoietic stem cell transplant recipients: a prospective multicenter study. Blood. 2010;116(10):1655–1662.
    1. Kharfan-Dabaja MA, Boeckh M, Wilck MB, et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis. 2012;12(4):290–299.
    1. La Rosa C, Longmate J, Lacey SF, et al. Clinical evaluation of safety and immunogenicity of PADRE-cytomegalovirus (CMV) and tetanus-CMV fusion peptide vaccines with or without PF03512676 adjuvant. J Infect Dis. 2012;205(8):1294–1304.
    1. Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99(11):3916–3922.
    1. Nakamura R, Palmer JM, O'Donnell MR, et al. Reduced intensity allogeneic hematopoietic stem cell transplantation for MDS using tacrolimus/sirolimus-based GVHD prophylaxis. Leukemia Res. 2012;36(9):1152–1156.
    1. Rodriguez R, Nakamura R, Palmer JM, et al. A phase II pilot study of tacrolimus/sirolimus GVHD prophylaxis for sibling donor hematopoietic stem cell transplantation using 3 conditioning regimens. Blood. 2010;115(5):1098–1105.
    1. Diamond DJ, York J, Sun JY, Wright CL, Forman SJ. Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood. 1997;90(5):1751–1767.
    1. Krieg AM, Efler SM, Wittpoth M, Al Adhami MJ, Davis HL. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J Immunother. 2004;27(6):460–471.
    1. Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–1139.
    1. Suessmuth Y, Mukherjee R, Watkins B, et al. CMV reactivation drives posttransplant T-cell reconstitution and results in defects in the underlying TCRbeta repertoire. Blood. 2015;125(25):3835–3850.
    1. Armand P, Kim HT, Logan BR, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123(23):3664–3671.
    1. Bowden RA, Fisher LD, Rogers K, Cays M, Meyers JD. Cytomegalovirus (CMV)-specific intravenous immunoglobulin for the prevention of primary CMV infection and disease after marrow transplant. J Infect Dis. 1991;164(3):483–487.
    1. Zhou W, Longmate J, Lacey SF, et al. Impact of donor CMV status on viral infection and reconstitution of multifunction CMV-specific T cells in CMV-positive transplant recipients. Blood. 2009;113(25):6465–6476.
    1. Longmate J, York J, La Rosa C, et al. Population coverage by HLA class-I restricted cytotoxic T-lymphocyte epitopes. Immunogenetics. 2001;52(3–4):165–173.
    1. Mitchell DA, Batich KA, Gunn MD, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015;519(7543):366–369.
    1. Ozdemir E, St John LS, Gillespie G, et al. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood. 2002;100(10):3690–3697.
    1. La Rosa C, Wang Z, Brewer JC, et al. Preclinical development of an adjuvant-free peptide vaccine with activity against CMV pp65 in HLA transgenic mice. Blood. 2002;100(10):3681–3689.
    1. Lacey SF, Gallez-Hawkins G, Crooks M, et al. Characterization of cytotoxic function of CMV-pp65-specific CD8+ T-lymphocytes identified by HLA tetramers in recipients and donors of stem-cell transplants. Transplantation. 2002;74(5):722–732.
    1. La Rosa C, Wang Z, Lacey SF, et al. In vitro expansion of polyclonal T-cell subsets for adoptive immunotherapy by recombinant modified vaccinia Ankara. Exp Hematol. 2006;34(4):497–507.
    1. Rubinstein LV, Korn EL, Freidlin B, Hunsberger S, Ivy SP, Smith MA. Design issues of randomized phase II trials and a proposal for phase II screening trials. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(28):7199–7206.
    1. Green ML, Leisenring WM, Xie H, et al. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood. 2013;122(7):1316–1324.
    1. Foley B, Cooley S, Verneris MR, et al. Human Cytomegalovirus (CMV)-Induced Memory-like NKG2C+ NK Cells Are Transplantable and Expand In Vivo in Response to Recipient CMV Antigen. The Journal of Immunology. 2012;189(10):5082–5108.
    1. Kharfan-Dabaja MA, Nishihori T. Vaccine therapy for cytomegalovirus in the setting of allogeneic hematopoietic cell transplantation. Expert Rev Vaccines. 2015;14(3):341–350.
    1. Griffiths PD, Stanton A, McCarrell E, et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet. 2011;377(9773):1256–1263.

Source: PubMed

3
Předplatit