Artificial Cell Membrane Polymersome-Based Intranasal Beta Spike Formulation as a Second Generation Covid-19 Vaccine

Jian Hang Lam, Devendra Shivhare, Teck Wan Chia, Suet Li Chew, Gaurav Sinsinbar, Ting Yan Aw, Siamy Wong, Shrinivas Venkataraman, Francesca Wei Inng Lim, Pierre Vandepapeliere, Madhavan Nallani, Jian Hang Lam, Devendra Shivhare, Teck Wan Chia, Suet Li Chew, Gaurav Sinsinbar, Ting Yan Aw, Siamy Wong, Shrinivas Venkataraman, Francesca Wei Inng Lim, Pierre Vandepapeliere, Madhavan Nallani

Abstract

Current parenteral coronavirus disease 2019 (Covid-19) vaccines inadequately protect against infection of the upper respiratory tract. Additionally, antibodies generated by wild type (WT) spike-based vaccines poorly neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. To address the need for a second-generation vaccine, we have initiated a preclinical program to produce and evaluate a potential candidate. Our vaccine consists of recombinant Beta spike protein coadministered with synthetic CpG adjuvant. Both components are encapsulated within artificial cell membrane (ACM) polymersomes, synthetic nanovesicles efficiently internalized by antigen presenting cells, including dendritic cells, enabling targeted delivery of cargo for enhanced immune responses. ACM vaccine is immunogenic in C57BL/6 mice and Golden Syrian hamsters, evoking high serum IgG and neutralizing responses. Compared to an ACM-WT spike vaccine that generates predominantly WT-neutralizing antibodies, the ACM-Beta spike vaccine induces antibodies that neutralize WT and Beta viruses equally. Intramuscular (IM)-immunized hamsters are strongly protected from weight loss and other clinical symptoms after the Beta challenge but show delayed viral clearance in the upper airway. With intranasal (IN) immunization, however, neutralizing antibodies are generated in the upper airway concomitant with rapid and potent reduction of viral load. Moreover, antibodies are cross-neutralizing and show good activity against Omicron. Safety is evaluated in New Zealand white rabbits in a repeated dose toxicological study under Good Laboratory Practice (GLP) conditions. Three doses, IM or IN, at two-week intervals do not induce an adverse effect or systemic toxicity. Cumulatively, these results support the application for a Phase 1 clinical trial of ACM-polymersome-based Covid-19 vaccine (ClinicalTrials.gov identifier: NCT05385991).

Keywords: ACM; Beta spike; Covid-19; intranasal; polymersome; vaccine.

Conflict of interest statement

The authors declare the following competing financial interest(s): J.H.L., D.S., T.W.C., S.L.C., S.V., G.S., T.Y.A., and S.W. are employees of ACM Biolabs Pte Ltd., Singapore. M.N. is the Chief Executive Officer of ACM Biolabs Pte Ltd., Singapore. P.V. is the acting Chief Medical Officer of ACM Biosciences AG, Basel, Switzerland.

Figures

Figure 1
Figure 1
ACM-Covid-19 vaccine preclinical development program. The vaccine consisted of insect cell-produced recombinant spike protein and synthetic CpG adjuvant separately encapsulated in ACM polymersomes for coadministration. Immunogenicity was assessed in mice and hamsters after IM or IN administration. Protection against a live virus challenge was examined in hamsters. Key efficacy readouts are indicated. Safety was evaluated in a repeated dose GLP toxicological study in rabbits. Vaccine-related adverse effects were not detected.
Figure 2
Figure 2
Serum antibody response to ACM-Covid-19 vaccines. (a) Immunization, sample collection, and live virus challenge schedule. Golden Syrian hamsters (n = 8) were IM administered one of the following: (i) PBS; (ii) fS1S2(WT) + fCpG; (iii) ACM-S1S2(WT) + ACM-CpG; (iv) ACM-S1S2(Beta) + ACM-CpG. (b, c) WT and Beta spike-specific serum IgG titers, respectively. The bar graph represents mean ± SD. Two-way repeated measures ANOVA with Tukey’s or Šídák’s multiple comparisons was performed. Significant differences between Day 20 and Day 34 IgG titers, between placebo and vaccinated animals, and between free S1S2(WT)-vaccinated and ACM-vaccinated animals are indicated for each time point. *: P ≤ 0.05; **: P≤ 0.01; ***: P ≤ 0.001; ****: P≤ 0.0001; ns: not significant; NA: not applicable. (d–f) Neutralizing potency toward WT virus or Beta variant. Geometric mean titers (GMTs) are indicated at the top of each graph; fold-change in GMT with respect to WT virus is indicated at the bottom. Lower limit of detection (1:20 serum dilution) is indicated by the horizontal dashed line. A two-tailed paired t test was performed.
Figure 3
Figure 3
Live SARS-CoV-2 Beta variant challenge. Hamsters (n = 8) were inoculated with Beta variant via the intranasal route. (a) Changes in body weight over 14 days relative to the initial weight (horizontal dashed line). Mean ± SEM is shown. (b) Area under the curve (AUC) analysis for changes in body weight. Bar graph represents mean ± SD. Brown-Forsythe and Welch ANOVA with Dunnett’s T3 multiple comparisons was performed. Only significant differences are shown. *:P ≤ 0.05; **: P ≤ 0.01; ***:P ≤ 0.001. (c) Peak COVID scores of hamsters within 14 days after the virus challenge. Hamsters were observed daily for signs of disease (mild ruffled or ruffled fur, hunched back, labored/heavy breathing, and lethargy) or were noted as normal. Individual COVID scores were assigned (0 normal; ≤2 mild disease; 3 moderate disease; ≥4 severe disease). Plotted are individual peak COVID scores with average scores per group, gender depicted as bar graphs, and range depicted as whiskers. One-way ANOVA with Tukey’s multiple comparisons was performed. Statistical significance with respect to gender-matched placebo controls is indicated above the bar graph. ***: P ≤ 0.001; ****:P ≤ 0.001; ns: not significant. (d) Histopathological analysis of SARS-CoV-2-related microscopic findings in lungs Day 14 post-challenge. Lungs of male (top) and female (bottom) hamsters were collected, fixed, processed to H&E-stained sections, and evaluated by a board-certified pathologist. Microscopic findings (hyperplasia, inflammation, and fibrosis) were scored according to severity and size of involved tissue or noted as unremarkable. (e, f) Viral RNA loads in oral swabs as determined by qPCR. Copy numbers (mean ± SEM) of total and subgenomic RNA (sgRNA) are shown, respectively. Horizontal dashed lines represent lower limits of detection (62 and 31 RNA copies/mL, respectively). Two-way repeated measures ANOVA with Tukey’s multiple comparisons was performed. Only significant differences with respect to placebo controls are shown. *: P ≤ 0.05; **:P ≤ 0.01; ***: P ≤ 0.001; ****:P ≤ 0.0001.
Figure 4
Figure 4
IN administration enhanced the immunogenicity of ACM-S1S2(Beta) + ACM-CpG and induced neutralizing antibodies in the upper airway. Hamsters (n = 8) were IM or IN administered an identical dose of ACM-S1S2(Beta) + ACM-CpG on Days 0 and 21. (a, b) WT and Beta spike-specific serum IgG titers, respectively. Bar graph represents mean ± SD. Two-way repeated measures ANOVA with Šídák’s multiple comparisons was performed. *:P ≤ 0.05; **: P ≤ 0.01; ***:P ≤ 0.001; ****: P ≤ 0.0001; ns: not significant. (c) Neutralizing potency toward WT virus or Beta variant. Bar graph represents mean ± SD. Geometric mean titers (GMTs) are shown on top of the bar graphs. Lower limit of detection (1:20 serum dilution) is indicated by the horizontal dashed line. A two-tailed paired t test was performed. (d) Changes in body weight following the intranasal challenge with live SARS-CoV-2 Beta variant. Animals were monitored for 14 days. Initial body weight is indicated by the horizontal dashed line. Mean ± SEM is shown. (e) Area under the curve (AUC) analysis for changes in body weight. Bar graph represents mean ± SD. Brown-Forsythe and Welch ANOVA with Dunnett’s T3 multiple comparisons was performed. (f) Peak mean COVID scores of hamsters within 14 days after the virus challenge. Hamsters were observed daily for signs of disease such as mild ruffled or ruffled fur, hunched back, labored/heavy breathing, and lethargy or were noted as normal. Individual COVID scores based on clinical observation were assigned (0 normal, ≤2 mild disease, 3 moderate disease, ≥4 severe disease). Plotted are individual peak COVID scores (individual data points) and mean peak COVID scores per group and gender (bar) with the range (whiskers). One-way ANOVA with Tukey’s multiple comparisons was performed. A significant difference with respect to gender-matched placebo controls is indicated, where present. (g) Histopathological analysis of SARS-CoV-2-related microscopic findings in hamster lungs Day 14 post-challenge. Lungs of male (top) and female (bottom) hamsters were collected, fixed, processed to H&E-stained sections, and evaluated by a board-certified pathologist. Microscopic findings (hyperplasia, inflammation, and fibrosis) were scored according to the severity and size of the involved tissue. (h, i) Viral RNA loads in oral swabs as determined by qPCR. Copy numbers (mean ± SEM) of total and subgenomic RNA (sgRNA) are shown, respectively. Horizontal dashed lines represent lower limits of detection (62 and 31 RNA copies/mL, respectively). Two-way repeated measures ANOVA with Tukey’s multiple comparisons was performed. *: P ≤ 0.05; **: P≤ 0.01; ***: P ≤ 0.001; ****: P≤ 0.0001; ns: not significant. (j, k) Neutralizing activity of nasal washes from hamsters IM or IN immunized, respectively. Neutralization of RBD from WT, Delta, or Omicron virus was determined using a cPass kit (% inhibition indicated above the bar graphs). To overcome their highly dilute nature, nasal washes from each group were pooled and concentrated 40-fold.
Figure 5
Figure 5
Body weight changes in rabbits IM or IN administered ACM-S1S2(Beta) + ACM-CpG. (a) Immunization and sample collection schedule. New Zealand white rabbits were administered 0.5 mL of 20 μg of ACM-S1S2(Beta) + 100 μg of ACM-CpG 7909 on Days 0, 14, and 28. IM injection was performed on the left quadriceps muscle on Days 0 and 28 and on the right on Day 14. IN was performed with 0.25 mL per nostril. Rabbits were segregated into a main study group (five males and five females) and a recovery group (two males and two females). (b, f) Changes in body weight of the main study group over 28 days after IM or IN administration, respectively. Male and females were analyzed separately. Initial body weight is indicated by the horizontal dashed line. Mean ± SEM is shown. (c, g) Area under the curve (AUC) analysis for changes in body weight after IM or IN administration, respectively. Bar graph represents mean ± SD. Two-way ANOVA with Šídák’s multiple comparisons was performed. ns: not significant. (d, h) Changes in body weight of the recovery group over 57 days after IM or IN administration, respectively. Males and females were combined for analysis. (e, i) AUC analysis for changes in body weight after IM or IN administration, respectively.
Figure 6
Figure 6
Serum C-reactive protein (CRP) levels and histopathological findings at the sites of administration. Rabbits were IM (a–c) or IN (d–f) administered placebo or ACM-S1S2(Beta) + ACM-CpG. (a, d) Serum CRP levels on Days 0, 2, 30, and 57. Data from Days 0, 2, and 30 was derived from the main study group (n = 10) and segregated on the basis of gender; data from Day 57 was derived from the recovery group (n = 4) and was not segregated. Two-way ANOVA with Šídák’s multiple comparisons was performed. *:P ≤ 0.05; ns: not significant. (b, c, e, f) Histopathological examination of the iliac lymph node, quadriceps muscle, and nose. Tissues were fixed, processed to H&E-stained sections, and evaluated by two pathologists. Microscopic findings (increased cellularity, hemorrhage, inflammatory infiltrate and cell debris) were scored according to severity. Analysis of the main study group on Day 30 (b, e) was segregated on the basis of gender, whereas the recovery group on Day 57 (c, f) was analyzed irrespective of gender.

References

    1. Buchan S. A.; Tibebu S.; Daneman N.; Whelan M.; Vanniyasingam T.; Murti M.; Brown K. A. Increased household secondary attacks rates with Variant of Concern SARS-CoV-2 index cases. Clin Infect Dis 2022, 74, 703–706. 10.1093/cid/ciab496.
    1. Dhar M. S.; Marwal R.; Vs R.; Ponnusamy K.; Jolly B.; Bhoyar R. C.; Sardana V.; Naushin S.; Rophina M.; Mellan T. A.; et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science 2021, 374 (6570), 995–999. 10.1126/science.abj9932.
    1. Fisman D. N.; Tuite A. R. Evaluation of the relative virulence of novel SARS-CoV-2 variants: a retrospective cohort study in Ontario, Canada. Cmaj 2021, 193 (42), E1619–e1625. 10.1503/cmaj.211248.
    1. Planas D.; Veyer D.; Baidaliuk A.; Staropoli I.; Guivel-Benhassine F.; Rajah M. M.; Planchais C.; Porrot F.; Robillard N.; Puech J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596 (7871), 276–280. 10.1038/s41586-021-03777-9.
    1. Garcia-Beltran W. F.; St Denis K. J.; Hoelzemer A.; Lam E. C.; Nitido A. D.; Sheehan M. L.; Berrios C.; Ofoman O.; Chang C. C.; Hauser B. M.; et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457.10.1016/j.cell.2021.12.033.
    1. Liu C.; Ginn H. M.; Dejnirattisai W.; Supasa P.; Wang B.; Tuekprakhon A.; Nutalai R.; Zhou D.; Mentzer A. J.; Zhao Y.; et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021, 184 (16), 4220–4236.e13. 10.1016/j.cell.2021.06.020.
    1. Greaney A. J.; Loes A. N.; Crawford K. H. D.; Starr T. N.; Malone K. D.; Chu H. Y.; Bloom J. D. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 2021, 29 (3), 463–476.e6. 10.1016/j.chom.2021.02.003.
    1. Planas D.; Saunders N.; Maes P.; Guivel-Benhassine F.; Planchais C.; Buchrieser J.; Bolland W. H.; Porrot F.; Staropoli I.; Lemoine F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671.10.1038/s41586-021-04389-z.
    1. Cohn B. A.; Cirillo P. M.; Murphy C. C.; Krigbaum N. Y.; Wallace A. W. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science 2022, 375, 331.10.1126/science.abm0620.
    1. Lopez Bernal J.; Andrews N.; Gower C.; Gallagher E.; Simmons R.; Thelwall S.; Stowe J.; Tessier E.; Groves N.; Dabrera G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J. Med. 2021, 385 (7), 585–594. 10.1056/NEJMoa2108891.
    1. Hu Z.; Tao B.; Li Z.; Song Y.; Yi C.; Li J.; Zhu M.; Yi Y.; Huang P.; Wang J. Effectiveness of inactivated COVID-19 vaccines against severe illness in B.1.617.2 (Delta) variant-infected patients in Jiangsu, China. Int. J. Infect Dis 2022, 116, 204–209. 10.1016/j.ijid.2022.01.030.
    1. GeurtsvanKessel C. H.; Geers D.; Schmitz K. S.; Mykytyn A. Z.; Lamers M. M.; Bogers S.; Scherbeijn S.; Gommers L.; Sablerolles R. S. G.; Nieuwkoop N. N.; et al. Divergent SARS CoV-2 Omicron-reactive T- and B cell responses in COVID-19 vaccine recipients. Sci. Immunol 2022, 7, eabo2202.10.1126/sciimmunol.abo2202.
    1. Keeton R.; Tincho M. B.; Ngomti A.; Baguma R.; Benede N.; Suzuki A.; Khan K.; Cele S.; Bernstein M.; Karim F.; et al.SARS-CoV-2 Spike T Cell Responses Induced Upon Vaccination or Infection Remain Robust against Omicron. medRxiv 202110.1101/2021.12.26.21268380; (accessed 2022-01-18).
    1. Tarke A.; Sidney J.; Methot N.; Yu E. D.; Zhang Y.; Dan J. M.; Goodwin B.; Rubiro P.; Sutherland A.; Wang E.; et al. Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2021, 2 (7), 100355.10.1016/j.xcrm.2021.100355.
    1. Hewins B.; Rahman M.; Bermejo-Martin J. F.; Kelvin A. A.; Richardson C. D.; Rubino S.; Kumar A.; Ndishimye P.; Toloue Ostadgavahi A.; Mahmud-Al-Rafat A. Alpha, Beta, Delta, Omicron, and SARS-CoV-2 Breakthrough Cases: Defining Immunological Mechanisms for Vaccine Waning and Vaccine-Variant Mismatch. Frontiers in Virology 2022, 2, 849936.10.3389/fviro.2022.849936.
    1. Wall E. C.; Wu M.; Harvey R.; Kelly G.; Warchal S.; Sawyer C.; Daniels R.; Hobson P.; Hatipoglu E.; Ngai Y.; et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet 2021, 397 (10292), 2331–2333. 10.1016/S0140-6736(21)01290-3.
    1. Garcia-Beltran W. F.; Lam E. C.; St Denis K.; Nitido A. D.; Garcia Z. H.; Hauser B. M.; Feldman J.; Pavlovic M. N.; Gregory D. J.; Poznansky M. C.; et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021, 184 (9), 2523.10.1016/j.cell.2021.04.006.
    1. Dejnirattisai W.; Huo J.; Zhou D.; Zahradník J.; Supasa P.; Liu C.; Duyvesteyn H. M. E.; Ginn H. M.; Mentzer A. J.; Tuekprakhon A.; et al.Omicron-B.1.1.529 Leads to Widespread Escape from Neutralizing Antibody Responses. bioRxiv 202110.1101/2021.12.03.471045; (accessed 2022-01-18).
    1. Cele S.; Gazy I.; Jackson L.; Hwa S. H.; Tegally H.; Lustig G.; Giandhari J.; Pillay S.; Wilkinson E.; Naidoo Y.; et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 2021, 593 (7857), 142–146. 10.1038/s41586-021-03471-w.
    1. Moyo-Gwete T.; Madzivhandila M.; Makhado Z.; Ayres F.; Mhlanga D.; Oosthuysen B.; Lambson B. E.; Kgagudi P.; Tegally H.; Iranzadeh A.; et al. Cross-Reactive Neutralizing Antibody Responses Elicited by SARS-CoV-2 501Y.V2 (B.1.351). N Engl J. Med. 2021, 384 (22), 2161–2163. 10.1056/NEJMc2104192.
    1. Lam J. H.; Khan A. K.; Cornell T. A.; Chia T. W.; Dress R. J.; Yeow W. W. W.; Mohd-Ismail N. K.; Venkataraman S.; Ng K. T.; Tan Y. J.; et al. Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable SARS-CoV-2 Spike Protein Subunit Vaccine. ACS Nano 2021, 15 (10), 15754–15770. 10.1021/acsnano.1c01243.
    1. Mohsen M. O.; Gomes A. C.; Cabral-Miranda G.; Krueger C. C.; Leoratti F. M.; Stein J. V.; Bachmann M. F. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. J. Controlled Release 2017, 251, 92–100. 10.1016/j.jconrel.2017.02.031.
    1. van Doremalen N.; Purushotham J. N.; Schulz J. E.; Holbrook M. G.; Bushmaker T.; Carmody A.; Port J. R.; Yinda C. K.; Okumura A.; Saturday G. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl Med. 2021, 13 (607), eabh0755.10.1126/scitranslmed.abh0755.
    1. Hsieh C. L.; Goldsmith J. A.; Schaub J. M.; DiVenere A. M.; Kuo H. C.; Javanmardi K.; Le K. C.; Wrapp D.; Lee A. G.; Liu Y.; et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020, 369 (6510), 1501–1505. 10.1126/science.abd0826.
    1. Riley T. P.; Chou H. T.; Hu R.; Bzymek K. P.; Correia A. R.; Partin A. C.; Li D.; Gong D.; Wang Z.; Yu X.; et al. Enhancing the Prefusion Conformational Stability of SARS-CoV-2 Spike Protein Through Structure-Guided Design. Front Immunol 2021, 12, 660198.10.3389/fimmu.2021.660198.
    1. Krieg A. M.; Efler S. M.; Wittpoth M.; Al Adhami M. J.; Davis H. L. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother 2004, 27 (6), 460–471. 10.1097/00002371-200411000-00006.
    1. Scheiermann J.; Klinman D. M. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine 2014, 32 (48), 6377–6389. 10.1016/j.vaccine.2014.06.065.
    1. Brito L. A.; Singh M. Acceptable levels of endotoxin in vaccine formulations during preclinical research. J. Pharm. Sci. 2011, 100 (1), 34–37. 10.1002/jps.22267.
    1. McCluskie M. J.; Davis H. L. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J. Immunol 1998, 161 (9), 4463–4466.
    1. Xie H.; Gursel I.; Ivins B. E.; Singh M.; O’Hagan D. T.; Ulmer J. B.; Klinman D. M. CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infect. Immun. 2005, 73 (2), 828–833. 10.1128/IAI.73.2.828-833.2005.
    1. von Hunolstein C.; Mariotti S.; Teloni R.; Alfarone G.; Romagnoli G.; Orefici G.; Nisini R. The adjuvant effect of synthetic oligodeoxynucleotide containing CpG motif converts the anti-Haemophilus influenzae type b glycoconjugates into efficient anti-polysaccharide and anti-carrier polyvalent vaccines. Vaccine 2001, 19 (23–24), 3058–3066. 10.1016/S0264-410X(01)00048-2.
    1. Eastcott J. W.; Holmberg C. J.; Dewhirst F. E.; Esch T. R.; Smith D. J.; Taubman M. A. Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid. Vaccine 2001, 19 (13–14), 1636–1642. 10.1016/S0264-410X(00)00422-9.
    1. Nazeri S.; Zakeri S.; Mehrizi A. A.; Sardari S.; Djadid N. D. Measuring of IgG2c isotype instead of IgG2a in immunized C57BL/6 mice with Plasmodium vivax TRAP as a subunit vaccine candidate in order to correct interpretation of Th1 versus Th2 immune response. Exp Parasitol 2020, 216, 107944.10.1016/j.exppara.2020.107944.
    1. Mallory R.; Formica N.; Pfeiffer S.; Wilkinson B.; Marcheschi A.; Albert G.; McFall H.; Robinson M.; Plested J. S.; Zhu M.; et al.Immunogenicity and Safety following a Homologous Booster Dose of a SARS-CoV-2 Recombinant Spike Protein Vaccine (NVX-CoV2373): A Phase 2 Randomized Placebo-Controlled Trial. medRxiv 202110.1101/2021.12.23.21267374; (accessed 2022-01-19).
    1. Tan C. W.; Chia W. N.; Qin X.; Liu P.; Chen M. I.; Tiu C.; Hu Z.; Chen V. C.; Young B. E.; Sia W. R.; et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol. 2020, 38 (9), 1073–1078. 10.1038/s41587-020-0631-z.
    1. Greaney A. J.; Starr T. N.; Eguia R. T.; Loes A. N.; Khan K.; Karim F.; Cele S.; Bowen J. E.; Logue J. K.; Corti D.; et al.A SARS-CoV-2 Variant Elicits an Antibody Response with a Shifted Immunodominance Hierarchy. bioRxiv 202110.1101/2021.10.12.4641; (accessed 2022-01-19).
    1. Sheward D. J.; Mandolesi M.; Urgard E.; Kim C.; Hanke L.; Perez Vidakovics L.; Pankow A.; Smith N. L.; Castro Dopico X.; McInerney G. M.; et al. Beta RBD boost broadens antibody-mediated protection against SARS-CoV-2 variants in animal models. Cell Rep. Med. 2021, 2 (11), 100450.10.1016/j.xcrm.2021.100450.
    1. Horiuchi S.; Oishi K.; Carrau L.; Frere J.; Møller R.; Panis M.; tenOever B. R. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci. Immunol 2021, 6 (66), eabm3131.10.1126/sciimmunol.abm3131.
    1. Yuan L.; Zhu H.; Wu K.; Zhou M.; Ma J.; Chen R.; Tang Q.; Cheng T.; Guan Y.; Xia N. Female sex hormone, progesterone, ameliorates the severity of SARS-CoV-2-caused pneumonia in the Syrian hamster model. Signal Transduct Target Ther 2022, 7 (1), 47.10.1038/s41392-021-00860-5.
    1. Wölfel R.; Corman V. M.; Guggemos W.; Seilmaier M.; Zange S.; Müller M. A.; Niemeyer D.; Jones T. C.; Vollmar P.; Rothe C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581 (7809), 465–469. 10.1038/s41586-020-2196-x.
    1. Afkhami S.; D’Agostino M. R.; Zhang A.; Stacey H. D.; Marzok A.; Kang A.; Singh R.; Bavananthasivam J.; Ye G.; Luo X.; et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022, 185 (5), 896–915.e19. 10.1016/j.cell.2022.02.005.
    1. van der Ley P. A.; Zariri A.; van Riet E.; Oosterhoff D.; Kruiswijk C. P. An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity Against a SARS-CoV-2 Infection. Front Immunol 2021, 12, 781280.10.3389/fimmu.2021.781280.
    1. Krammer F. SARS-CoV-2 vaccines in development. Nature 2020, 586 (7830), 516–527. 10.1038/s41586-020-2798-3.
    1. See R. H.; Zakhartchouk A. N.; Petric M.; Lawrence D. J.; Mok C. P. Y.; Hogan R. J.; Rowe T.; Zitzow L. A.; Karunakaran K. P.; Hitt M. M.; et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J. Gen Virol 2006, 87 (Pt 3), 641–650. 10.1099/vir.0.81579-0.
    1. Morokutti A.; Muster T.; Ferko B. Intranasal vaccination with a replication-deficient influenza virus induces heterosubtypic neutralising mucosal IgA antibodies in humans. Vaccine 2014, 32 (17), 1897–1900. 10.1016/j.vaccine.2014.02.009.
    1. Xia H.; Zou J.; Kurhade C.; Cai H.; Yang Q.; Cutler M.; Cooper D.; Muik A.; Jansen K. U.; Xie X.; et al.Neutralization of Omicron SARS-CoV-2 by 2 or 3 Doses of BNT162b2 Vaccine. bioRxiv 202210.1101/2022.01.21.476344; (accessed 2022-01-23).
    1. Gagne M.; Moliva J. I.; Foulds K. E.; Andrew S. F.; Flynn B. J.; Werner A. P.; Wagner D. A.; Teng I.-T.; Lin B. C.; Moore C.; et al.mRNA-1273 or mRNA-Omicron Boost in Vaccinated Macaques Elicits Comparable B Cell Expansion, Neutralizing Antibodies and Protection against Omicron. bioRxiv 202210.1101/2022.02.03.479037; (accessed 2022-02-05).
    1. McMahan K.; Giffin V.; Tostanoski L. H.; Chung B.; Siamatu M.; Suthar M. S.; Halfmann P.; Kawaoka Y.; Piedra-Mora C.; Martinot A. J.; et al.Reduced Pathogenicity of the SARS-CoV-2 Omicron Variant in Hamsters. bioRxiv 202210.1101/2022.01.02.474743; (accessed 2022-02-05).
    1. Peacock T. P.; Brown J. C.; Zhou J.; Thakur N.; Sukhova K.; Newman J.; Kugathasan R.; Yan A. W. C.; Furnon W.; De Lorenzo G.; Cowton V. M.; Reuss D.; et al.. The Altered Entry Pathway and Antigenic Distance of the SARS-CoV-2 Omicron Variant Map to Separate Domains of Spike Protein. bioRxiv 202210.1101/2021.12.31.474653; (accessed 2022-10-11).
    1. Al-Halifa S.; Gauthier L.; Arpin D.; Bourgault S.; Archambault D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front Immunol 2019, 10, 22.10.3389/fimmu.2019.00022.
    1. Kiyono H.; Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol 2004, 4 (9), 699–710. 10.1038/nri1439.
    1. Childers N. K.; Tong G.; Mitchell S.; Kirk K.; Russell M. W.; Michalek S. M. A controlled clinical study of the effect of nasal immunization with a Streptococcus mutans antigen alone or incorporated into liposomes on induction of immune responses. Infect. Immun. 1999, 67 (2), 618–623. 10.1128/IAI.67.2.618-623.1999.
    1. Thomas C.; Rawat A.; Hope-Weeks L.; Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharmaceutics 2011, 8 (2), 405–415. 10.1021/mp100255c.
    1. Slütter B.; Bal S.; Keijzer C.; Mallants R.; Hagenaars N.; Que I.; Kaijzel E.; van Eden W.; Augustijns P.; Löwik C.; et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010, 28 (38), 6282–6291. 10.1016/j.vaccine.2010.06.121.
    1. Knight F. C.; Gilchuk P.; Kumar A.; Becker K. W.; Sevimli S.; Jacobson M. E.; Suryadevara N.; Wang-Bishop L.; Boyd K. L.; Crowe J. E. Jr; et al. Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8(+) Lung-Resident Memory T Cells. ACS Nano 2019, 13 (10), 10939–10960. 10.1021/acsnano.9b00326.
    1. Sheets R. L.; Stein J.; Manetz T. S.; Andrews C.; Bailer R.; Rathmann J.; Gomez P. L. Toxicological safety evaluation of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar despite differing plasmid backbones or gene-inserts. Toxicol. Sci. 2006, 91 (2), 620–630. 10.1093/toxsci/kfj170.
    1. Pati R.; Shevtsov M.; Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018, 9, 2224.10.3389/fimmu.2018.02224.
    1. Thorp E. B.; Boada C.; Jarbath C.; Luo X. Nanoparticle Platforms for Antigen-Specific Immune Tolerance. Front Immunol 2020, 11, 945.10.3389/fimmu.2020.00945.
    1. Sanità G.; Carrese B.; Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol. Biosci 2020, 7, 587012.10.3389/fmolb.2020.587012.
    1. Ndeupen S.; Qin Z.; Jacobsen S.; Bouteau A.; Estanbouli H.; Igyártó B. Z. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 2021, 24 (12), 103479.10.1016/j.isci.2021.103479.
    1. Janakiraman V.; Forrest W. F.; Seshagiri S. Estimation of baculovirus titer based on viable cell size. Nat. Protoc 2006, 1 (5), 2271–2276. 10.1038/nprot.2006.387.
    1. Yang Q.; Jacobs T. M.; McCallen J. D.; Moore D. T.; Huckaby J. T.; Edelstein J. N.; Lai S. K. Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Anal. Chem. 2016, 88 (23), 11804–11812. 10.1021/acs.analchem.6b03437.
    1. Sherman M. R.; Williams L. D.; Sobczyk M. A.; Michaels S. J.; Saifer M. G. Role of the methoxy group in immune responses to mPEG-protein conjugates. Bioconjug Chem. 2012, 23 (3), 485–499. 10.1021/bc200551b.
    1. Draize J. H.; Woodard G.; Calvery H. O. Methods for the Study of Irritation and Toxicity of Substances Applied Topically to the Skin and Mucous Membranes. J. Pharmacol. Exp. Ther. 1944, 82 (3), 377–390.

Source: PubMed

3
Předplatit