Early prediction of spontaneous Patent Ductus Arteriosus (PDA) closure and PDA-associated outcomes: a prospective cohort investigation

Jonathan L Slaughter, Clifford L Cua, Jennifer L Notestine, Brian K Rivera, Laura Marzec, Erinn M Hade, Nathalie L Maitre, Mark A Klebanoff, Megan Ilgenfritz, Vi T Le, Dennis J Lewandowski, Carl H Backes, Jonathan L Slaughter, Clifford L Cua, Jennifer L Notestine, Brian K Rivera, Laura Marzec, Erinn M Hade, Nathalie L Maitre, Mark A Klebanoff, Megan Ilgenfritz, Vi T Le, Dennis J Lewandowski, Carl H Backes

Abstract

Background: Patent ductus arteriosus (PDA), the most commonly diagnosed cardiovascular condition in preterm infants, is associated with increased mortality and harmful long-term outcomes (chronic lung disease, neurodevelopmental delay). Although pharmacologic and/or interventional treatments to close PDA likely benefit some infants, widespread routine treatment of all preterm infants with PDA may not improve outcomes. Most PDAs close spontaneously by 44-weeks postmenstrual age; treatment is increasingly controversial, varying markedly between institutions and providers. Because treatment detriments may outweigh benefits, especially in infants destined for early, spontaneous PDA closure, the relevant unanswered clinical question is not whether to treat all preterm infants with PDA, but whom to treat (and when). Clinicians cannot currently predict in the first month which infants are at highest risk for persistent PDA, nor which combination of clinical risk factors, echocardiographic measurements, and biomarkers best predict PDA-associated harm.

Methods: Prospective cohort of untreated infants with PDA (n=450) will be used to predict spontaneous ductal closure timing. Clinical measures, serum (brain natriuretic peptide, N-terminal pro-brain natriuretic peptide) and urine (neutrophil gelatinase-associated lipocalin, heart-type fatty acid-binding protein) biomarkers, and echocardiographic variables collected during each of first 4 postnatal weeks will be analyzed to identify those associated with long-term impairment. Myocardial deformation imaging and tissue Doppler imaging, innovative echocardiographic techniques, will facilitate quantitative evaluation of myocardial performance. Aim1 will estimate probability of spontaneous PDA closure and predict timing of ductal closure using echocardiographic, biomarker, and clinical predictors. Aim2 will specify which echocardiographic predictors and biomarkers are associated with mortality and respiratory illness severity at 36-weeks postmenstrual age. Aim3 will identify which echocardiographic predictors and biomarkers are associated with 22 to 26-month neurodevelopmental delay. Models will be validated in a separate cohort of infants (n=225) enrolled subsequent to primary study cohort.

Discussion: The current study will make significant contributions to scientific knowledge and effective PDA management. Study results will reduce unnecessary and harmful overtreatment of infants with a high probability of early spontaneous PDA closure and facilitate development of outcomes-focused trials to examine effectiveness of PDA closure in "high-risk" infants most likely to receive benefit.

Trial registration: ClinicalTrials.gov NCT03782610. Registered 20 December 2018.

Keywords: echocardiogram; patent ductus arteriosus; prediction modeling; preterm infant; prospective cohort.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Inpatient Ductal Patency by Gestation over Time. 50% patent ductus arteriosus (PDA) prevalence in preterm infants (n=244): 23-24 weeks (113 d); 25-27 weeks (82 d); 28-29 weeks (30 d). Log-rank test, p=0.0003

References

    1. Noori S, McCoy M, Friedlich P, Bright B, Gottipati V, Seri I, et al. Failure of ductus arteriosus closure is associated with increased mortality in preterm infants. Pediatrics. 2009;123(1):e138–ee44. doi: 10.1542/peds.2008-2418.
    1. Brown ER. Increased risk of bronchopulmonary dysplasia in infants with patent ductus arteriosus. J Pediatr. 1979;95(5 Pt 2):865–866. doi: 10.1016/S0022-3476(79)80454-0.
    1. Benitz William E. Patent Ductus Arteriosus in Preterm Infants. Pediatrics. 2015;137(1):e20153730. doi: 10.1542/peds.2015-3730.
    1. Schena F, Francescato G, Cappelleri A, Picciolli I, Mayer A, Mosca F, et al. Association between Hemodynamically Significant Patent Ductus Arteriosus and Bronchopulmonary Dysplasia. J Pediatr. 2015;166(6):1488–1492. doi: 10.1016/j.jpeds.2015.03.012.
    1. Ryder RW, Shelton JD, Guinan ME. Necrotizing enterocolitis: a prospective multicenter investigation. Am J Epidemiol. 1980;112(1):113–123. doi: 10.1093/oxfordjournals.aje.a112960.
    1. Havranek T, Rahimi M, Hall H, Armbrecht E. Feeding preterm neonates with patent ductus arteriosus (PDA): intestinal blood flow characteristics and clinical outcomes. J Matern Fetal Neonatal Med. 2015;28(5):526–530. doi: 10.3109/14767058.2014.923395.
    1. Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics. 2014;134(2):e444–e453. doi: 10.1542/peds.2013-2336.
    1. Drougia A, Giapros V, Krallis N, Theocharis P, Nikaki A, Tzoufi M, et al. Incidence and risk factors for cerebral palsy in infants with perinatal problems: a 15-year review. Early Hum Dev. 2007;83(8):541–547. doi: 10.1016/j.earlhumdev.2006.10.004.
    1. Vincer MJ, Allen AC, Joseph KS, Stinson DA, Scott H, Wood E. Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics. 2006;118(6):e1621–6. doi: 10.1542/peds.2006-1522.
    1. Padilla N, Alexandrou G, Blennow M, Lagercrantz H, Aden U. Brain Growth Gains and Losses in Extremely Preterm Infants at Term. Cereb Cortex. 2015;25(7):1897–1905. doi: 10.1093/cercor/bht431.
    1. Lemmers P. M. A., Benders M. J. N. L., DAscenzo R., Zethof J., Alderliesten T., Kersbergen K. J., Isgum I., de Vries L. S., Groenendaal F., van Bel F. Patent Ductus Arteriosus and Brain Volume. PEDIATRICS. 2016;137(4):e20153090–e20153090. doi: 10.1542/peds.2015-3090.
    1. Clyman RI, Couto J, Murphy GM. Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all? Semin Perinatol. 2012;36(2):123–129. doi: 10.1053/j.semperi.2011.09.022.
    1. Reese J, Laughon MM. The Patent Ductus Arteriosus Problem: Infants Who Still Need Treatment. J Pediatr. 2015;167(5):954–956. doi: 10.1016/j.jpeds.2015.08.023.
    1. Koch J, Hensley G, Roy L, Brown S, Ramaciotti C, Rosenfeld CR. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Pediatrics. 2006;117(4):1113–1121. doi: 10.1542/peds.2005-1528.
    1. Tosse V, Pillekamp F, Verde P, Hadzik B, Sabir H, Mayatepek E, et al. Urinary NT-proBNP, NGAL, and H-FABP may predict hemodynamic relevance of patent ductus arteriosus in very low birth weight infants. Neonatology. 2012;101(4):260–266. doi: 10.1159/000334826.
    1. Benitz WE. Patent ductus arteriosus: to treat or not to treat? Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F80–F82. doi: 10.1136/archdischild-2011-300381.
    1. Hagadorn JI, Brownell EA, Trzaski JM, Johnson KR, Lainwala S, Campbell BT, et al. Trends and variation in management and outcomes of very low-birth-weight infants with patent ductus arteriosus. Pediatr Res. 2016;80(6):785–792. doi: 10.1038/pr.2016.166.
    1. Slaughter Jonathan L., Reagan Patricia B., Newman Thomas B., Klebanoff Mark A. Comparative Effectiveness of Nonsteroidal Anti-inflammatory Drug Treatment vs No Treatment for Patent Ductus Arteriosus in Preterm Infants. JAMA Pediatrics. 2017;171(3):e164354. doi: 10.1001/jamapediatrics.2016.4354.
    1. Bixler GM, Powers GC, Clark RH, Walker MW, Tolia VN. Changes in the Diagnosis and Management of Patent Ductus Arteriosus from 2006 to 2015 in United States Neonatal Intensive Care Units. J Pediatr. 2017;189:105–112. doi: 10.1016/j.jpeds.2017.05.024.
    1. Slaughter Jonathan L., Reagan Patricia B., Bapat Roopali V., Newman Thomas B., Klebanoff Mark A. Nonsteroidal anti-inflammatory administration and patent ductus arteriosus ligation, a survey of practice preferences at US children’s hospitals. European Journal of Pediatrics. 2016;175(6):775–783. doi: 10.1007/s00431-016-2705-y.
    1. Cooke L, Steer PA, Woodgate PG. Indomethacin for asymptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2003;2:CD003745.
    1. Ohlsson A, Walia R, Shah S. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev. 2015;2:CD003481.
    1. Mirea Lucia, Sankaran Koravangattu, Seshia Mary, Ohlsson Arne, Allen Alexander C., Aziz Khalid, Lee Shoo K., Shah Prakesh S. Treatment of Patent Ductus Arteriosus and Neonatal Mortality/Morbidities: Adjustment for Treatment Selection Bias. The Journal of Pediatrics. 2012;161(4):689-694.e1. doi: 10.1016/j.jpeds.2012.05.007.
    1. Romagnoli C, Bersani I, Rubortone SA, Lacerenza S, De Carolis MP. Current evidence on the safety profile of NSAIDs for the treatment of PDA. J Matern Fetal Neonatal Med. 2011;24(S3):10–13. doi: 10.3109/14767058.2011.604987.
    1. Sivanandan S, Bali V, Soraisham AS, Harabor A, Kamaluddeen M. Effectiveness and safety of indomethacin versus ibuprofen for the treatment of patent ductus arteriosus in preterm infants. Am J Perinatol. 2013;30(9):745–750. doi: 10.1055/s-0032-1332800.
    1. Pezzati M, Vangi V, Biagiotti R, Bertini G, Cianciulli D, Rubaltelli FF. Effects of indomethacin and ibuprofen on mesenteric and renal blood flow in preterm infants with patent ductus arteriosus. J Pediatr. 1999;135(6):733–738. doi: 10.1016/S0022-3476(99)70093-4.
    1. Patel J, Roberts I, Azzopardi D, Hamilton P, Edwards AD. Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatric Res. 2000;47(1):36–42. doi: 10.1203/00006450-200001000-00009.
    1. Stark AR, Carlo WA, Tyson JE, Papile LA, Wright LL, Shankaran S, et al. Adverse effects of early dexamethasone treatment in extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. New Engl J Med. 2001;344(2):95–101. doi: 10.1056/NEJM200101113440203.
    1. Attridge JT, Clark R, Walker MW, Gordon PV. New insights into spontaneous intestinal perforation using a national data set: (1) SIP is associated with early indomethacin exposure. J Perinatol. 2006;26(2):93–99. doi: 10.1038/sj.jp.7211429.
    1. Paquette L, Friedlich P, Ramanathan R, Seri I. Concurrent use of indomethacin and dexamethasone increases the risk of spontaneous intestinal perforation in very low birth weight neonates. J Perinatol. 2006;26(8):486–492. doi: 10.1038/sj.jp.7211548.
    1. Hammerman C, Bin-Nun A, Kaplan M. Managing the patent ductus arteriosus in the premature neonate: a new look at what we thought we knew. Semin Perinatol. 2012;36(2):130–138. doi: 10.1053/j.semperi.2011.09.023.
    1. Jobe AH. Drug pricing in pediatrics: the egregious example of indomethacin. Pediatrics. 2007;119(6):1197–1198. doi: 10.1542/peds.2007-0184.
    1. Poon G. Ibuprofen lysine (NeoProfen) for the treatment of patent ductus arteriosus. Proc (Bayl Univ Med Cent). 2007;20(1):83. doi: 10.1080/08998280.2007.11928244.
    1. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low-birth-weight infants. Cochrane Database Syst Rev. 2015;3:Cd010061.
    1. van den Anker JN, Allegaert K. Acetaminophen to Prevent Symptomatic Patent Ductus Arteriosus: Another Drug Bites the Dust? J Pediatr. 2016;177:7–9. doi: 10.1016/j.jpeds.2016.06.034.
    1. Jevtovic-Todorovic V. Functional implications of an early exposure to general anesthesia: are we changing the behavior of our children? Mol Neurobiol. 2013;48(2):288–293. doi: 10.1007/s12035-013-8488-5.
    1. Davidson AJ, McCann ME, Morton NS, Myles PS. Anesthesia and outcome after neonatal surgery: the role for randomized trials. Anesthesiology. 2008;109(6):941–944. doi: 10.1097/ALN.0b013e31818e3f79.
    1. Benjamin JR, Smith PB, Cotten CM, Jaggers J, Goldstein RF, Malcolm WF. Long-term morbidities associated with vocal cord paralysis after surgical closure of a patent ductus arteriosus in extremely low birth weight infants. J Perinatol. 2010;30(6):408–413. doi: 10.1038/jp.2009.124.
    1. El-Khuffash AF, Jain A, Dragulescu A, McNamara PJ, Mertens L. Acute changes in myocardial systolic function in preterm infants undergoing patent ductus arteriosus ligation: a tissue Doppler and myocardial deformation study. J Am Soc Echocardiogr. 2012;25(10):1058–1067. doi: 10.1016/j.echo.2012.07.016.
    1. Jain A, Sahni M, El-Khuffash A, Khadawardi E, Sehgal A, McNamara PJ. Use of targeted neonatal echocardiography to prevent postoperative cardiorespiratory instability after patent ductus arteriosus ligation. J Pediatr. 2012;160(4):584–9.e1. doi: 10.1016/j.jpeds.2011.09.027.
    1. Backes CH, Cheatham SL, Deyo GM, Leopold S, Ball MK, Smith CV, et al. Percutaneous Patent Ductus Arteriosus (PDA) Closure in Very Preterm Infants: Feasibility and Complications. J Am Heart Assoc. 2016;5(2):e002923. 10.1161/JAHA.115.002923.
    1. Backes CH, Kennedy KF, Locke M, Cua CL, Ball MK, Fick TA, et al. Transcatheter Occlusion of the Patent Ductus Arteriosus in 747 Infants <6 kg: Insights From the NCDR IMPACT Registry. JACC Cardiovasc Interv. 2017;10(17):1729–1727. doi: 10.1016/j.jcin.2017.05.018.
    1. Backes Carl H., Rivera Brian K., Bridge Jeffrey A., Armstrong Aimee K., Boe Brian A., Berman Darren P., Fick Tyler, Holzer Ralf J., Hijazi Ziyad M., Abadir Sylvia, Justino Henri, Bergersen Lisa, Smith Charles V., Kirpalani Haresh. Percutaneous Patent Ductus Arteriosus (PDA) Closure During Infancy: A Meta-analysis. Pediatrics. 2017;139(2):e20162927. doi: 10.1542/peds.2016-2927.
    1. Backes CH, Smith CV. Patent Ductus Arteriosus- A Complex Problem in Need of a Solid Conceptual Foundation. Circ J. 2016;80(3):601–602. doi: 10.1253/circj.CJ-16-0057.
    1. Backes CH, Cua C, Kreutzer J, Armsby L, El-Said H, Moore JW, et al. Low weight as an independent risk factor for adverse events during cardiac catheterization of infants. Catheter Cardiovasc Interv. 2013;82(5):786–794. doi: 10.1002/ccd.24726.
    1. Hamrick SE, Hansmann G. Patent ductus arteriosus of the preterm infant. Pediatrics. 2010;125(5):1020–1030. doi: 10.1542/peds.2009-3506.
    1. Clyman RI. Mechanisms regulating the ductus arteriosus. Biol Neonate. 2006;89(4):330–335. doi: 10.1159/000092870.
    1. Schneider DJ, Moore JW. Patent ductus arteriosus. Circulation. 2006;114(17):1873–1882. doi: 10.1161/CIRCULATIONAHA.105.592063.
    1. Schneider DJ. The patent ductus arteriosus in term infants, children, and adults. Semin Perinatol. 2012;36(2):146–153. doi: 10.1053/j.semperi.2011.09.025.
    1. Brooks JM, Travadi JN, Patole SK, Doherty DA, Simmer K. Is surgical ligation of patent ductus arteriosus necessary? The Western Australian experience of conservative management. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F235–F239. doi: 10.1136/adc.2004.057638.
    1. Weisz DE, Mirea L, Resende MHF, Ly L, Church PT, Kelly E, et al. Outcomes of Surgical Ligation after Unsuccessful Pharmacotherapy for Patent Ductus Arteriosus in Neonates Born Extremely Preterm. J Pediatr. 2018;195(Apr):5.
    1. McNamara PJ, Sehgal A. Towards rational management of the patent ductus arteriosus: the need for disease staging. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F424–F427. doi: 10.1136/adc.2007.118117.
    1. El-Khuffash A, Weisz DE, McNamara PJ. Reflections of the changes in patent ductus arteriosus management during the last 10 years. Arch Dis Child Fetal Neonatal Ed. 2016;101(5):F474–F478. doi: 10.1136/archdischild-2014-306214.
    1. Semberova Jana, Sirc Jan, Miletin Jan, Kucera Jachym, Berka Ivan, Sebkova Sylva, O’Sullivan Sinead, Franklin Orla, Stranak Zbynek. Spontaneous Closure of Patent Ductus Arteriosus in Infants ≤1500 g. Pediatrics. 2017;140(2):e20164258. doi: 10.1542/peds.2016-4258.
    1. Sehgal A, Paul E, Menahem S. Functional echocardiography in staging for ductal disease severity : role in predicting outcomes. Eur J Pediatr. 2013;172(2):179–184. doi: 10.1007/s00431-012-1851-0.
    1. El-Khuffash A, James AT, Corcoran JD, Dicker P, Franklin O, Elsayed YN, et al. A Patent Ductus Arteriosus Severity Score Predicts Chronic Lung Disease or Death before Discharge. J Pediatr. 2015;167(6):1354–61.e2. doi: 10.1016/j.jpeds.2015.09.028.
    1. Thankavel PP, Rosenfeld CR, Christie L, Ramaciotti C. Early echocardiographic prediction of ductal closure in neonates </= 30 weeks gestation. J Perinatol. 2013;33(1):45–51. doi: 10.1038/jp.2012.41.
    1. El-Khuffash AF, Slevin M, McNamara PJ, Molloy EJ. Troponin T, N-terminal pro natriuretic peptide and a patent ductus arteriosus scoring system predict death before discharge or neurodevelopmental outcome at 2 years in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2011;96(2):F133–F137. doi: 10.1136/adc.2010.185967.
    1. Nankervis CA, Martin EM, Crane ML, Samson KS, Welty SE, Nelin LD. Implementation of a multidisciplinary guideline-driven approach to the care of the extremely premature infant improved hospital outcomes. Acta Paediatr. 2010;99(2):188–193.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Boris JR, Beland MJ, Bergensen LJ, Colan SD, Dangel J, Daniels CJ, et al. 2017 AHA/ACC Key Data Elements and Definitions for Ambulatory Electronic Health Records in Pediatric and Congenital Cardiology: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards. J Am Coll Cardiol. 2017;70(8):1029–1095. doi: 10.1016/j.jacc.2017.06.027.
    1. Quiñones MA, Douglas PS, Foster E, Gorcsan J, Lewis JF, Pearlman AS, et al. ACC/AHA clinical competence statement on echocardiography: a report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on Clinical Competence. J Am Coll Cardiol. 2003;41(4):687–708. doi: 10.1016/S0735-1097(02)02885-1.
    1. Levy PT, Holland MR, Sekarski TJ, Hamvas A, Singh GK. Feasibility and reproducibility of systolic right ventricular strain measurement by speckle-tracking echocardiography in premature infants. J Am Soc Echocardiogr. 2013;26(10):1201–1213. doi: 10.1016/j.echo.2013.06.005.
    1. Levy PT, Dioneda B, Holland MR, Sekarski TJ, Lee CK, Mathur A, et al. Right ventricular function in preterm and term neonates: reference values for right ventricle areas and fractional area of change. J Am Soc Echocardiogr. 2015;28(5):559–569. doi: 10.1016/j.echo.2015.01.024.
    1. Haque U, Stiver C, Rivera BK, Richards B, Ma N, Cua CL, et al. Right ventricular performance using myocardial deformation imaging in infants with bronchopulmonary dysplasia. J Perinatol. 2017;37(1):81–87. doi: 10.1038/jp.2016.173.
    1. Cua CL, Fenstermaker PB, Dyke Ii PC. Changes in tissue Doppler characteristics in a patient with pulmonary atresia and intact ventricular septum. Cardiol Young. 2006;16(4):395–397. doi: 10.1017/S1047951106000175.
    1. Cua CL, Kollins K, McConnell PI. Echocardiographic analysis of an extracellular matrix tricuspid valve. Echocardiography. 2014;31(8):E264–E266. doi: 10.1111/echo.12650.
    1. Husain N, Gokhale J, Nicholson L, Perkins A, Cooper AL, Cheatham JP, et al. Comparing echocardiographic assessment of systolic function with catheterization data in patients with single right ventricles. Acta Cardiol. 2014;69(3):281–288. doi: 10.1080/AC.69.3.3027831.
    1. Moiduddin N, Texter KM, Cheatham JP, Chisolm JL, Kovalchin JP, Nicholson L, et al. Strain echocardiographic assessment of ventricular function after percutaneous pulmonary valve implantation. Congenit Heart Dis. 2012;7(4):361–371. doi: 10.1111/j.1747-0803.2012.00680.x.
    1. Moiduddin N, Texter KM, Zaidi AN, Hershenson JA, Stefaniak C, Hayes J, et al. Two-dimensional speckle strain and dyssynchrony in single left ventricles vs. normal left ventricles. Congenit Heart Dis. 2010;5(6):579–586. doi: 10.1111/j.1747-0803.2010.00460.x.
    1. Jain A, Mohamed A, El-Khuffash A, Connelly KA, Dallaire F, Jankov RP, et al. A comprehensive echocardiographic protocol for assessing neonatal right ventricular dimensions and function in the transitional period: normative data and z scores. J Am Soc Echocardiogr. 2014;27(12):1293–1304. doi: 10.1016/j.echo.2014.08.018.
    1. Richardson DK, Corcoran JD, Escobar GJ, Lee SK. SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. J Pediatr. 2001;138(1):92–100. doi: 10.1067/mpd.2001.109608.
    1. NICHD Neonatal Research Network (NRN): Extremely Preterm Birth Outcome Data Calculator Tool. 2017 [29 Nov 2017]. Available from: .
    1. Tyson JE, Parikh NA, Langer J, Green C, Higgins RD. Intensive care for extreme prematurity--moving beyond gestational age. New Engl J Med. 2008;358(16):1672–1681. doi: 10.1056/NEJMoa073059.
    1. Zupancic JA, Richardson DK, Horbar JD, Carpenter JH, Lee SK, Escobar GJ. Revalidation of the Score for Neonatal Acute Physiology in the Vermont Oxford Network. Pediatrics. 2007;119(1):e156–e163. doi: 10.1542/peds.2005-2957.
    1. Dammann O, Shah B, Naples M, Bednarek F, Zupancic J, Allred EN, et al. Interinstitutional variation in prediction of death by SNAP-II and SNAPPE-II among extremely preterm infants. Pediatrics. 2009;124(5):e1001–e1006. doi: 10.1542/peds.2008-3233.
    1. Chien LY, Whyte R, Thiessen P, Walker R, Brabyn D, Lee SK. Snap-II predicts severe intraventricular hemorrhage and chronic lung disease in the neonatal intensive care unit. J Perinatol. 2002;22(1):26–30. doi: 10.1038/sj.jp.7210585.
    1. Logan JW, Dammann O, Allred EN, Dammann C, Beam K, Joseph RM, et al. Early postnatal illness severity scores predict neurodevelopmental impairments at 10 years of age in children born extremely preterm. J Perinatol. 2017;37(5):606–614. doi: 10.1038/jp.2016.242.
    1. Dammann O, Naples M, Bednarek F, Shah B, Kuban KC, O'Shea TM, et al. SNAP-II and SNAPPE-II and the risk of structural and functional brain disorders in extremely low gestational age newborns: the ELGAN study. Neonatology. 2010;97(2):71–82. doi: 10.1159/000232588.
    1. Onland W, Debray TP, Laughon MM, Miedema M, Cools F, Askie LM, et al. Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study. BMC Pediatr. 2013;13:207. doi: 10.1186/1471-2431-13-207.
    1. Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183(12):1715–1722. doi: 10.1164/rccm.201101-0055OC.
    1. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–1980. doi: 10.1164/ajrccm.164.10.2101140.
    1. Jobe A. The Search for Treatment of Bronchopulmonary Dysplasia. JAMA Pediatr. 2016;170(4):322–324. doi: 10.1001/jamapediatrics.2015.4721.
    1. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–1729. doi: 10.1164/ajrccm.163.7.2011060.
    1. Narayanan M, Beardsmore CS, Owers-Bradley J, Dogaru CM, Mada M, Ball I, et al. Catch-up alveolarization in ex-preterm children: evidence from (3) He magnetic resonance. Am J Respir Crit Care Med. 2013;187(10):1104–1109. doi: 10.1164/rccm.201210-1850OC.
    1. Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigsknecht C, Swartz D, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107(3):161–166. doi: 10.1159/000369774.
    1. Gal P. Patent ductus arteriosus: indomethacin, Ibuprofen, surgery, or no treatment at all? J Pediatr Pharmacol Ther. 2009;14(1):4–9. doi: 10.5863/1551-6776-14.1.4.
    1. Reese J, Shelton EL, Slaughter JC, McNamara PJ. Prophylactic Indomethacin Revisited. J Pediatr. 2017;186:11–4.e1. doi: 10.1016/j.jpeds.2017.03.036.
    1. Crossley KJ, Allison BJ, Polglase GR, Morley CJ, Davis PG, Hooper SB. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol. 2009;587(Pt 19):4695–4704. doi: 10.1113/jphysiol.2009.174870.
    1. Evans N, Moorcraft J. Effect of patency of the ductus arteriosus on blood pressure in very preterm infants. Arch Dis Child. 1992;67:1169–1173. doi: 10.1136/adc.67.10_Spec_No.1169.
    1. Alagarsamy S, Chhabra M, Gudavalli M, Nadroo AM, Sutija VG, Yugrakh D. Comparison of clinical criteria with echocardiographic findings in diagnosing PDA in preterm infants. J Perinatal Med. 2005;33(2):161–164. doi: 10.1515/JPM.2005.030.
    1. Davis P, Turner-Gomes S, Cunningham K, Way C, Roberts R, Schmidt B. Precision and accuracy of clinical and radiological signs in premature infants at risk of patent ductus arteriosus. Arch Pediatr Adolesc Med. 1995;149(10):1136–1141. doi: 10.1001/archpedi.1995.02170230090013.
    1. Han UJ, Cho HJ, Cho YK, Choi YY, Ma JS. Change in blood pressure and pulse pressure in preterm infants after treatment of patent ductus arteriosus with indomethacin. Korean Circ J. 2011;41(4):203–208. doi: 10.4070/kcj.2011.41.4.203.
    1. Hirsimaki H, Kero P, Wanne O. Doppler ultrasound and clinical evaluation in detection and grading of patient ductus arteriosus in neonates. Crit Care Med. 1990;18(5):490–493. doi: 10.1097/00003246-199005000-00005.
    1. Lubetzky R, Mandel D, Mimouni FB, Diamant S, Birger A, Barak M, et al. Indomethacin-induced early patent ductus arteriosus closure cannot be predicted by a decrease in pulse pressure. Am J Perinatol. 2004;21(5):257–261. doi: 10.1055/s-2004-829872.
    1. McGrath RL, McGuinness GA, Way GL, Wolfe RR, Nora JJ, Simmons MA. The silent ductus arteriosus. J Pediatr. 1978;93(1):110–113. doi: 10.1016/S0022-3476(78)80617-9.
    1. Skelton R, Evans N, Smythe J. A blinded comparison of clinical and echocardiographic evaluation of the preterm infant for patent ductus arteriosus. J Paediatr Child Health. 1994;30(5):406–411. doi: 10.1111/j.1440-1754.1994.tb00689.x.
    1. Urquhart DS, Nicholl RM. How good is clinical examination at detecting a significant patent ductus arteriosus in the preterm neonate? Arch Dis Child. 2003;88(1):85–86. doi: 10.1136/adc.88.1.85.
    1. Zanardo V, Vedovato S, Chiozza L, Faggian D, Favaro F, Trevisanuto D. Pharmacological closure of patent ductus arteriosus: effects on pulse pressure and on endothelin-1 and vasopressin excretion. Am J Perinatol. 2008;25(6):353–358. doi: 10.1055/s-2008-1078763.
    1. Jain A, Shah PS. Diagnosis, Evaluation, and Management of Patent Ductus Arteriosus in Preterm Neonates. JAMA Pediatr. 2015;169(9):863–872. doi: 10.1001/jamapediatrics.2015.0987.
    1. Kluckow M, Evans N. Early echocardiographic prediction of symptomatic patent ductus arteriosus in preterm infants undergoing mechanical ventilation. J Pediatr. 1995;127(5):774–779. doi: 10.1016/S0022-3476(95)70172-9.
    1. Evans N. Current controversies in the diagnosis and treatment of patent ductus arteriosus in preterm infants. Adv Neonatal Care. 2003;3(4):168–177. doi: 10.1016/S1536-0903(03)00143-7.
    1. Evans N, Iyer P. Longitudinal changes in the diameter of the ductus arteriosus in ventilated preterm infants: correlation with respiratory outcomes. Arch Dis Child Fetal Neonatal Ed. 1995;72(3):F156–F161. doi: 10.1136/fn.72.3.F156.
    1. Ramos FG, Rosenfeld CR, Roy L, Koch J, Ramaciotti C. Echocardiographic predictors of symptomatic patent ductus arteriosus in extremely-low-birth-weight preterm neonates. J Perinatol. 2010;30(8):535–539. doi: 10.1038/jp.2010.14.
    1. Groves AM, Kuschel CA, Knight DB, Skinner JR. Does retrograde diastolic flow in the descending aorta signify impaired systemic perfusion in preterm infants? Pediatr Res. 2008;63(1):89–94. doi: 10.1203/PDR.0b013e31815b4830.
    1. Waggoner AD, Bierig SM. Tissue Doppler imaging: a useful echocardiographic method for the cardiac sonographer to assess systolic and diastolic ventricular function. J Am Soc Echocardiogr. 2001;14(12):1143–1152. doi: 10.1067/mje.2001.115391.
    1. Hershenson JA, Zaidi AN, Texter KM, Moiduddin N, Stefaniak CA, Hayes J, et al. Differences in tissue Doppler imaging between single ventricles after the fontan operation and normal controls. Am J Cardiol. 2010;106(1):99–103. doi: 10.1016/j.amjcard.2010.02.020.
    1. Rychik J, Tian ZY. Quantitative assessment of myocardial tissue velocities in normal children with Doppler tissue imaging. Am J Cardiol. 1996;77(14):1254–1257. doi: 10.1016/S0002-9149(96)00178-6.
    1. Aoki M, Harada K, Ogawa M, Tanaka T. Quantitative assessment of right ventricular function using doppler tissue imaging in fetuses with and without heart failure. J Am Soc Echocardiogr. 2004;17(1):28–35. doi: 10.1016/j.echo.2003.09.012.
    1. Nestaas E, Stoylen A, Brunvand L, Fugelseth D. Tissue Doppler derived longitudinal strain and strain rate during the first 3 days of life in healthy term neonates. Pediatr Res. 2009;65(3):357–362. doi: 10.1203/PDR.0b013e318193f149.
    1. Sanchez AA, Levy PT, Sekarski TJ, Hamvas A, Holland MR, Singh GK. Effects of frame rate on two-dimensional speckle tracking-derived measurements of myocardial deformation in premature infants. Echocardiography. 2015;32(5):839–847. doi: 10.1111/echo.12716.
    1. Parthiban A, Shirali G. Advanced functional echocardiographic imaging of the failing heart in children. Cardiol Young. 2015;25(Suppl 2):94–99. doi: 10.1017/S1047951115000888.
    1. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R. Strain and strain rate imaging by echocardiography - basic concepts and clinical applicability. Curr Cardiol Rev. 2009;5(2):133–148. doi: 10.2174/157340309788166642.
    1. Kalogeropoulos AP, Georgiopoulou VV, Howell S, Pernetz MA, Fisher MR, Lerakis S, et al. Evaluation of right intraventricular dyssynchrony by two-dimensional strain echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2008;21(9):1028–1034. doi: 10.1016/j.echo.2008.05.005.
    1. Levy PT, Singh GK. Challenges in Interpreting Deformation Values by Two-Dimensional Speckle-Tracking Echocardiography in Preterm and Term Infants. J Am Soc Echocardiogr. 2017;30(1):97–98. doi: 10.1016/j.echo.2016.08.011.
    1. Levy PT, El-Khuffash A, Patel MD, Breatnach CR, James AT, Sanchez AA, et al. Maturational Patterns of Systolic Ventricular Deformation Mechanics by Two-Dimensional Speckle-Tracking Echocardiography in Preterm Infants over the First Year of Age. J Am Soc Echocardiogr. 2017;30(7):685–98.e1. doi: 10.1016/j.echo.2017.03.003.
    1. Levy PT, Sanchez Mejia AA, Machefsky A, Fowler S, Holland MR, Singh GK. Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2014;27(5):549–60.e3. doi: 10.1016/j.echo.2014.01.015.
    1. Levy PT, Machefsky A, Sanchez AA, Patel MD, Rogal S, Fowler S, et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J Am Soc Echocardiogr. 2016;29(3):209–25.e6. doi: 10.1016/j.echo.2015.11.016.
    1. Breatnach CR, Levy PT, James AT, Franklin O, El-Khuffash A. Novel Echocardiography Methods in the Functional Assessment of the Newborn Heart. Neonatology. 2016;110(4):248–260. doi: 10.1159/000445779.
    1. Kulkarni M, Gokulakrishnan G, Price J, Fernandes CJ, Leeflang M, Pammi M. Diagnosing significant PDA using natriuretic peptides in preterm neonates: a systematic review. Pediatrics. 2015;135(2):e510–e525. doi: 10.1542/peds.2014-1995.
    1. Desai AS. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are not useful in heart failure management: the art of medicine remains long. Circulation. 2013;127(4):509–516. doi: 10.1161/CIRCULATIONAHA.112.120493.
    1. Januzzi JL, Troughton R. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation. 2013;127(4):500–507. doi: 10.1161/CIRCULATIONAHA.112.120485.
    1. Mearns BM. Prevention: BNP screening and collaborative care can help to prevent heart failure. Nat Rev Cardiol. 2013;10(9):489. doi: 10.1038/nrcardio.2013.109.
    1. Attridge JT, Kaufman DA, Lim DS. B-type natriuretic peptide concentrations to guide treatment of patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed. 2009;94(3):F178–F182. doi: 10.1136/adc.2008.147587.
    1. Chen S, Tacy T, Clyman R. How useful are B-type natriuretic peptide measurements for monitoring changes in patent ductus arteriosus shunt magnitude? J Perinatol. 2010;30(12):780–785. doi: 10.1038/jp.2010.47.
    1. Hammerman C, Shchors I, Schimmel MS, Bromiker R, Kaplan M, Nir A. N-terminal-pro-B-type natriuretic peptide in premature patent ductus arteriosus: a physiologic biomarker, but is it a clinical tool? Pediatr Cardiol. 2010;31(1):62–65. doi: 10.1007/s00246-009-9568-1.
    1. Hsu JH, Yang SN, Chen HL, Tseng HI, Dai ZK, Wu JR. B-type natriuretic peptide predicts responses to indomethacin in premature neonates with patent ductus arteriosus. J Pediatr. 2010;157(1):79–84. doi: 10.1016/j.jpeds.2009.12.045.
    1. Jeong HA, Shin J, Kim E, Lee EH, Choi BM, Son CS, et al. Correlation of B-type natriuretic peptide levels and echocardiographic parameters in preterm infants with patent ductus arteriosus. Korean J Pediatr. 2016;59(4):183–189. doi: 10.3345/kjp.2016.59.4.183.
    1. Lee JH, Shin JH, Park KH, Rhie YJ, Park MS, Choi BM. Can early B-type natriuretic peptide assays predict symptomatic patent ductus arteriosus in extremely low birth weight infants? Neonatology. 2013;103(2):118–122. doi: 10.1159/000343034.
    1. Martinovici D, Vanden Eijnden S, Unger P, Najem B, Gulbis B, Marechal Y. Early NT-proBNP is able to predict spontaneous closure of patent ductus arteriosus in preterm neonates, but not the need of its treatment. Pediatr Cardiol. 2011;32(7):953–957. doi: 10.1007/s00246-011-0020-y.
    1. Sanjeev S, Pettersen M, Lua J, Thomas R, Shankaran S, L'Ecuyer T. Role of plasma B-type natriuretic peptide in screening for hemodynamically significant patent ductus arteriosus in preterm neonates. J Perinatol. 2005;25(11):709–713. doi: 10.1038/sj.jp.7211383.
    1. Weisz DE, McNamara PJ, El-Khuffash A. Cardiac biomarkers and haemodynamically significant patent ductus arteriosus in preterm infants. Early Hum Dev. 2017;105:41–47. doi: 10.1016/j.earlhumdev.2016.12.007.
    1. Choi BM, Lee KH, Eun BL, Yoo KH, Hong YS, Son CS, et al. Utility of rapid B-type natriuretic peptide assay for diagnosis of symptomatic patent ductus arteriosus in preterm infants. Pediatrics. 2005;115(3):e255–e261. doi: 10.1542/peds.2004-1837.
    1. Czernik C, Lemmer J, Metze B, Koehne PS, Mueller C, Obladen M. B-type natriuretic peptide to predict ductus intervention in infants <28 weeks. Pediatr Res. 2008;64(3):286–290. doi: 10.1203/PDR.0b013e3181799594.
    1. Nuntnarumit P, Chongkongkiat P, Khositseth A. N-terminal-pro-brain natriuretic peptide: a guide for early targeted indomethacin therapy for patent ductus arteriosus in preterm Infants. Acta Paediatr. 2011;100(9):1217–1221. doi: 10.1111/j.1651-2227.2011.02304.x.
    1. Nuntnarumit P, Khositseth A, Thanomsingh P. N-terminal probrain natriuretic peptide and patent ductus arteriosus in preterm infants. J Perinatol. 2009;29(2):137–142. doi: 10.1038/jp.2008.185.
    1. Alenazi SA. N-terminal pro-brain natriuretic peptide measurements in hemodynamically significant patent ductus arteriosus in preterm infants. Pak J Med Sci. 2016;32(3):580–584. doi: 10.12669/pjms.323.9690.
    1. Kim JS, Shim EJ. B-type natriuretic Peptide assay for the diagnosis and prognosis of patent ductus arteriosus in preterm infants. Korean Circ J. 2012;42(3):192–196. doi: 10.4070/kcj.2012.42.3.192.
    1. Konig K, Guy KJ, Drew SM, Barfield CP. B-type and N-terminal pro-B-type natriuretic peptides are equally useful in assessing patent ductus arteriosus in very preterm infants. Acta Paediatr. 2015;104(4):e139–e142. doi: 10.1111/apa.12892.
    1. Mine K, Ohashi A, Tsuji S, Nakashima J, Hirabayashi M, Kaneko K. B-type natriuretic peptide for assessment of haemodynamically significant patent ductus arteriosus in premature infants. Acta Paediatr. 2013;102(8):e347–e352. doi: 10.1111/apa.12273.
    1. El-Khuffash A, Molloy E. The Use of N-Terminal-Pro-BNP in Preterm Infants. Int J Pediatr. 2009;2009:175216. doi: 10.1155/2009/175216.
    1. Sehgal A, Coombs P, Tan K, McNamara PJ. Spectral Doppler waveforms in systemic arteries and physiological significance of a patent ductus arteriosus. J Perinatol. 2011;31(3):150–156. doi: 10.1038/jp.2010.83.
    1. El-Khuffash A, Higgins M, Walsh K, Molloy EJ. Quantitative assessment of the degree of ductal steal using celiac artery blood flow to left ventricular output ratio in preterm infants. Neonatology. 2008;93(3):206–212. doi: 10.1159/000110869.
    1. Bolignano D, Coppolino G, Campo S, Aloisi C, Nicocia G, Frisina N, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is associated with severity of renal disease in proteinuric patients. Nephrol Dial Transplant. 2008;23(1):414–416. doi: 10.1093/ndt/gfm541.
    1. Bolignano D, Coppolino G, Lacquaniti A, Nicocia G, Buemi M. Pathological and prognostic value of urinary neutrophil gelatinase-associated lipocalin in macroproteinuric patients with worsening renal function. Kidney Blood Press Res. 2008;31(4):274–279. doi: 10.1159/000151665.
    1. Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis. 2008;52(3):595–605. doi: 10.1053/j.ajkd.2008.01.020.
    1. Bolignano D, Lacquaniti A, Coppolino G, Campo S, Arena A, Buemi M. Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res. 2008;31(4):255–258. doi: 10.1159/000143726.
    1. Cooper DS, Charpie JR, Flores FX, William Gaynor J, Salvin JW, Devarajan P, et al. Acute kidney injury and critical cardiac disease. World J Pediatr Congenit Heart Surg. 2011;2(3):411–423. doi: 10.1177/2150135111407214.
    1. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57(17):1752–1761. doi: 10.1016/j.jacc.2010.11.051.
    1. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–2309. doi: 10.1016/j.jacc.2011.08.017.
    1. Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr. 2011;158(6):1009–15.e1. doi: 10.1016/j.jpeds.2010.12.057.
    1. Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011;22(9):1748–1757. doi: 10.1681/ASN.2010121302.
    1. Pelsers MM, Hermens WT, Glatz JF. Fatty acid-binding proteins as plasma markers of tissue injury. Clin Chim Acta. 2005;352(1-2):15–35. doi: 10.1016/j.cccn.2004.09.001.
    1. Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, et al. Urinary NGAL in premature infants. Pediatr Res. 2008;64(4):423–428. doi: 10.1203/PDR.0b013e318181b3b2.
    1. Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Early CPAP versus surfactant in extremely preterm infants. New Engl J Med. 2010;362(21):1970–1979. doi: 10.1056/NEJMoa0911783.
    1. Kirpalani H, Millar D, Lemyre B, Yoder BA, Chiu A, Roberts RS, et al. A trial comparing noninvasive ventilation strategies in preterm infants. New Engl J Med. 2013;369(7):611–620. doi: 10.1056/NEJMoa1214533.
    1. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116(6):1353–1360. doi: 10.1542/peds.2005-0249.
    1. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB. Nasal CPAP or intubation at birth for very preterm infants. New Engl J Med. 2008;358(7):700–708. doi: 10.1056/NEJMoa072788.
    1. Lemmers PM, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics. 2008;121(1):142–147. doi: 10.1542/peds.2007-0925.
    1. Perlman JM, Hill A, Volpe JJ. The effect of patent ductus arteriosus on flow velocity in the anterior cerebral arteries: ductal steal in the premature newborn infant. J Pediatr. 1981;99(5):767–771. doi: 10.1016/S0022-3476(81)80408-8.
    1. Kabra NS, Schmidt B, Roberts RS, Doyle LW, Papile L, Fanaroff A, et al. Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: results from the Trial of Indomethacin Prophylaxis in Preterms. J Pediatr. 2007;150(3):229–34.e1. doi: 10.1016/j.jpeds.2006.11.039.
    1. Lee GY, Sohn YB, Kim MJ, Jeon GW, Shim JW, Chang YS, et al. Outcome following surgical closure of patent ductus arteriosus in very low birth weight infants in neonatal intensive care unit. Yonsei Med J. 2008;49(2):265–271. doi: 10.3349/ymj.2008.49.2.265.
    1. Weisz DE, Mirea L, Rosenberg E, Jang M, Ly L, Church PT, et al. Association of Patent Ductus Arteriosus Ligation With Death or Neurodevelopmental Impairment Among Extremely Preterm Infants. JAMA Pediatr. 2017;171(5):7. doi: 10.1001/jamapediatrics.2016.5143.
    1. Albers CA, Grieve AJ. Test review: Bayley, N.(2006). Bayley scales of infant and toddler development–third edition. San Antonio, TX: Harcourt assessment. J Psychoeduc Assess. 2007;25(2):180–190. doi: 10.1177/0734282906297199.
    1. Barratt W. The Barratt Simplified Measure of Social Status (BSMSS): Measuring SES. Unpublished manuscript, 2006. Indiana State University. Available from .
    1. Singer L, Yamashita T, Lilien L, Collin M, Baley J. A longitudinal study of developmental outcome of infants with bronchopulmonary dysplasia and very low birth weight. Pediatrics. 1997;100(6):987–993. doi: 10.1542/peds.100.6.987.
    1. Bennet L, Dhillon S, Lear CA, van den Heuij L, King V, Dean JM, et al. Chronic inflammation and impaired development of the preterm brain. J Reprod Immunol. 2017;125:45–55. doi: 10.1016/j.jri.2017.11.003.
    1. Pickier RH, McGrath JM, Reyna BA, McCain N, Lewis M, Cone S, et al. A model of neurodevelopmental risk and protection for preterm infants. Adv Neonatal Care. 2013;13(Suppl 5):S11–S20. doi: 10.1097/ANC.0000000000000022.
    1. Pickler RH, McGrath JM, Reyna BA, McCain N, Lewis M, Cone S, et al. A model of neurodevelopmental risk and protection for preterm infants. J Perinat Neonatal Nurs. 2010;24(4):356–365. doi: 10.1097/JPN.0b013e3181fb1e70.
    1. Pappas A, Adams-Chapman I, Shankaran S, McDonald SA, Stoll BJ, Laptook AR, et al. Neurodevelopmental and Behavioral Outcomes in Extremely Premature Neonates With Ventriculomegaly in the Absence of Periventricular-Intraventricular Hemorrhage. JAMA Pediatr. 2018;172(1):32–42. doi: 10.1001/jamapediatrics.2017.3545.
    1. Boghossian NS, McDonald SA, Bell EF, Carlo WA, Brumbaugh JE, Stoll BJ, et al. Association of Antenatal Corticosteroids With Mortality, Morbidity, and Nerodevelopmental Outcomes in Extremely Preterm Multiple Gestation Infants. JAMA Pediatr. 2016;170(6):593–601. doi: 10.1001/jamapediatrics.2016.0104.
    1. Maitre NL, Smolinsky C, Slaughter JC, Stark AR. Adverse neurodevelopmental outcomes after exposure to phenobarbital and levetiracetam for the treatment of neonatal seizures. J Perinatol. 2013;33(11):841–846. doi: 10.1038/jp.2013.116.
    1. Maitre NL, Marshall DD, Price WA, Slaughter JC, O'Shea TM, Maxfield C, et al. Neurodevelopmental outcome of infants with unilateral or bilateral periventricular hemorrhagic infarction. Pediatrics. 2009;124(6):e1153–e1160. doi: 10.1542/peds.2009-0953.
    1. Austin PC, Lee DS, D'Agostino RB, Fine JP. Developing points-based risk-scoring systems in the presence of competing risks. Stat Med. 2016;35(22):4056–4072. doi: 10.1002/sim.6994.
    1. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509. doi: 10.1080/01621459.1999.10474144.
    1. Fu Z, Parikh CR, Zhou B. Penalized variable selection in competing risks regression. Lifetime Data Anal. 2017;23(3):353–376. doi: 10.1007/s10985-016-9362-3.
    1. Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000;1(4):465–480. doi: 10.1093/biostatistics/1.4.465.
    1. Dobbin KK, Zhao Y, Simon RM. How large a training set is needed to develop a classifier for microarray data? Clinical Cancer Res. 2008;14(1):108–114. doi: 10.1158/1078-0432.CCR-07-0443.
    1. Pang H, Jung SH. Sample size considerations of prediction-validation methods in high-dimensional data for survival outcomes. Genet Epidemiol. 2013;37(3):276–282. doi: 10.1002/gepi.21721.
    1. Slaughter JL, Klebanoff MA. Neurodevelopmental Outcome in Relation to Treatment of Patent Ductus Arteriosus. JAMA Pediatr. 2017;171(10):1017–1018. doi: 10.1001/jamapediatrics.2017.2597.

Source: PubMed

3
Předplatit