Low and moderate-fat plant sterol fortified soymilk in modulation of plasma lipids and cholesterol kinetics in subjects with normal to high cholesterol concentrations: report on two randomized crossover studies

Todd C Rideout, Yen-Ming Chan, Scott V Harding, Peter Jh Jones, Todd C Rideout, Yen-Ming Chan, Scott V Harding, Peter Jh Jones

Abstract

Background: Although consumption of various plant sterol (PS)-enriched beverages is effective in lowering plasma cholesterol, the lipid-lowering potential of PS in a soymilk format has not been investigated thoroughly. Therefore, to evaluate the efficacy of PS-enriched soy beverages on plasma lipids and cholesterol kinetics, we conducted two separate 28 d dietary controlled cross-over studies. In study 1, the cholesterol-lowering efficacy of a low-fat (2 g/serving) PS enriched soy beverage was examined in 33 normal cholesterolemic subjects in comparison with 1% dairy milk. In study 2, we investigated the efficacy of a moderate-fat (3.5 g/serving) PS-enriched soy beverage on plasma cholesterol concentrations and cholesterol kinetic responses in 23 hypercholesterolemic subjects compared with 1% dairy milk. Both the low and moderate-fat PS-enriched soymilk varieties provided 1.95 g PS/d. Endpoint plasma variables were analyzed by repeated-measures ANOVA using baseline values as covariates for plasma lipid measurements.

Results: In comparison with the 1% dairy milk control, the low-fat soy beverage reduced (P < 0.05) total and LDL-cholesterol by 10 and 13%, respectively. Consumption of the moderate-fat PS-enriched soy beverage reduced (P < 0.05) plasma total and LDL-cholesterol by 12 and 15% respectively. Fasting triglycerides were reduced by 9.4% following consumption of the moderate-fat soy beverage in comparison with the 1% dairy milk. Both low and moderate-fat PS-enriched soy varieties reduced (P < 0.05) LDL:HDL and TC:HDL ratios compared with the 1% dairy milk control. Consumption of the moderate-fat PS-enriched soymilk reduced (P < 0.05) cholesterol absorption by 27%, but did not alter cholesterol synthesis in comparison with 1% dairy milk.

Conclusion: We conclude that, compared to 1% dairy milk, consumption of low and moderate-fat PS-enriched soy beverages represents an effective dietary strategy to reduce circulating lipid concentrations in normal to hypercholesterolemic individuals by reducing intestinal cholesterol absorption. TRIAL REGISTRATION (CLINICALTRIALS.GOV): NCT00923403 (Study 1), NCT00924391 (Study 2).

Figures

Figure 1
Figure 1
13C-cholesterol enrichment of red blood cells at 24, 48, 72, and 96 h following ingestion of 75 mg of [3,4]-13C-cholesterol in response to consumption of moderate-fat plant sterol enriched soymilk. Values are mean ± SEM (n = 17 for soy group, 18 for dairy group).
Figure 2
Figure 2
Individual % changes in LDL-C from baseline in response to the consumption of a low and moderate-fat PS-enriched soy beverage.

References

    1. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169:659–669. doi: 10.1001/archinternmed.2009.38.
    1. Jones PJ, Demonty I, Chan YM, Herzog Y, Pelled D. Fish-oil esters of plant sterols differ from vegetable-oil sterol esters in triglycerides lowering, carotenoid bioavailability and impact on plasminogen activator inhibitor-1 (PAI-1) concentrations in hypercholesterolemic subjects. Lipids Health Dis. 2007;6:28. doi: 10.1186/1476-511X-6-28.
    1. Vanstone CA, Raeini-Sarjaz M, Parsons WE, Jones PJ. Unesterified plant sterols and stanols lower LDL-cholesterol concentrations equivalently in hypercholesterolemic persons. Am J Clin Nutr. 2002;76:1272–1278.
    1. Jenkins DJ, Kendall CW, Nguyen TH, Marchie A, Faulkner DA, Ireland C, Josse AR, Vidgen E, Trautwein EA, Lapsley KG, et al. Effect of plant sterols in combination with other cholesterol-lowering foods. Metabolism. 2008;57:130–139. doi: 10.1016/j.metabol.2007.08.016.
    1. Demonty I, Ras RT, Knaap HC van der, Duchateau GS, Meijer L, Zock PL, Geleijnse JM, Trautwein EA. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr. 2009;139:271–284.
    1. Berger A, Jones PJ, Abumweis SS. Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis. 2004;3:5. doi: 10.1186/1476-511X-3-5.
    1. Devaraj S, Autret BC, Jialal I. Reduced-calorie orange juice beverage with plant sterols lowers C-reactive protein concentrations and improves the lipid profile in human volunteers. Am J Clin Nutr. 2006;84:756–761.
    1. de Jong A, Plat J, Lutjohann D, Mensink RP. Effects of long-term plant sterol or stanol ester consumption on lipid and lipoprotein metabolism in subjects on statin treatment. Br J Nutr. 2008;100:937–941. doi: 10.1017/S0007114508966113.
    1. Judd JT, Baer DJ, Chen SC, Clevidence BA, Muesing RA, Kramer M, Meijer GW. Plant sterol esters lower plasma lipids and most carotenoids in mildly hypercholesterolemic adults. Lipids. 2002;37:33–42. doi: 10.1007/s11745-002-0861-y.
    1. Jones PJ, Vanstone CA, Raeini-Sarjaz M, St-Onge MP. Phytosterols in low- and nonfat beverages as part of a controlled diet fail to lower plasma lipid levels. J Lipid Res. 2003;44:1713–1719. doi: 10.1194/jlr.M300089-JLR200.
    1. Hansel B, Nicolle C, Lalanne F, Tondu F, Lassel T, Donazzolo Y, Ferrieres J, Krempf M, Schlienger JL, Verges B, et al. Effect of low-fat, fermented milk enriched with plant sterols on serum lipid profile and oxidative stress in moderate hypercholesterolemia. Am J Clin Nutr. 2007;86:790–796.
    1. Bricarello LP, Kasinski N, Bertolami MC, Faludi A, Pinto LA, Relvas WG, Izar MC, Ihara SS, Tufik S, Fonseca FA. Comparison between the effects of soymilk and non-fat cow milk on lipid profile and lipid peroxidation in patients with primary hypercholesterolemia. Nutrition. 2004;20:200–204. doi: 10.1016/j.nut.2003.10.005.
    1. Gardner CD, Messina M, Kiazand A, Morris JL, Franke AA. Effect of two types of soymilk and dairy milk on plasma lipids in hypercholesterolemic adults: a randomized trial. J Am Coll Nutr. 2007;26:669–677.
    1. Sirtori CR, Pazzucconi F, Colombo L, Battistin P, Bondioli A, Descheemaeker K. Double-blind study of the addition of high-protein soya milk v. cows' milk to the diet of patients with severe hypercholesterolaemia and resistance to or intolerance of statins. Br J Nutr. 1999;82:91–96.
    1. Lin Y, Meijer GW, Vermeer MA, Trautwein EA. Soy protein enhances the cholesterol-lowering effect of plant sterol esters in cholesterol-fed hamsters. J Nutr. 2004;134:143–148.
    1. Weidner C, Krempf M, Bard JM, Cazaubiel M, Bell D. Cholesterol lowering effect of a soy drink enriched with plant sterols in a French population with moderate hypercholesterolemia. Lipids Health Dis. 2008;7:35. doi: 10.1186/1476-511X-7-35.
    1. Xiao CW. Health effects of soy protein and isoflavones in humans. J Nutr. 2008;138:1244S–1249S.
    1. Mussner MJ, Parhofer KG, Von Bergmann K, Schwandt P, Broedl U, Otto C. Effects of phytosterol ester-enriched margarine on plasma lipoproteins in mild to moderate hypercholesterolemia are related to basal cholesterol and fat intake. Metabolism. 2002;51:189–194. doi: 10.1053/meta.2002.29988.
    1. Abumweis SS, Barake R, Jones PJ. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr Res. 2008
    1. Ostlund RE, Jr, Spilburg CA, Stenson WF. Sitostanol administered in lecithin micelles potently reduces cholesterol absorption in humans. Am J Clin Nutr. 1999;70:826–831.
    1. Plat J, van Onselen EN, van Heugten MM, Mensink RP. Effects on serum lipids, lipoproteins and fat soluble antioxidant concentrations of consumption frequency of margarines and shortenings enriched with plant stanol esters. Eur J Clin Nutr. 2000;54:671–677. doi: 10.1038/sj.ejcn.1601071.
    1. Plat J, Brufau G, Dallinga-Thie GM, Dasselaar M, Mensink RP. A plant stanol yogurt drink alone or combined with a low-dose statin lowers serum triacylglycerol and non-HDL cholesterol in metabolic syndrome patients. J Nutr. 2009;139:1143–1149. doi: 10.3945/jn.108.103481.
    1. Naumann E, Plat J, Kester AD, Mensink RP. The baseline serum lipoprotein profile is related to plant stanol induced changes in serum lipoprotein cholesterol and triacylglycerol concentrations. J Am Coll Nutr. 2008;27:117–126.
    1. Rudkowska I, Abumweis SS, Nicolle C, Jones PJ. Association between non-responsiveness to plant sterol intervention and polymorphisms in cholesterol metabolism genes: a case-control study. Appl Physiol Nutr Metab. 2008;33:728–734. doi: 10.1139/H08-041.
    1. Zhao HL, Houweling AH, Vanstone CA, Jew S, Trautwein EA, Duchateau GS, Jones PJ. Genetic Variation in ABC G5/G8 and NPC1L1 Impact Cholesterol Response to Plant Sterols in Hypercholesterolemic Men. Lipids. 2008;43:1155–1164. doi: 10.1007/s11745-008-3241-y.
    1. Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL. Inhibition of cholesterol absorption in rats by plant sterols. J Lipid Res. 1988;29:1573–1582.
    1. Davis HR, Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279:33586–33592. doi: 10.1074/jbc.M405817200.
    1. Temel RE, Gebre AK, Parks JS, Rudel LL. Compared with Acyl-CoA:cholesterol O-acyltransferase (ACAT) 1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. J Biol Chem. 2003;278:47594–47601. doi: 10.1074/jbc.M308235200.
    1. AbuMweis SS, Vanstone CA, Lichtenstein AH, Jones PJ. Plant sterol consumption frequency affects plasma lipid levels and cholesterol kinetics in humans. Eur J Clin Nutr. 2009;63:747–755. doi: 10.1038/ejcn.2008.36.
    1. Jones PJ, Raeini-Sarjaz M, Ntanios FY, Vanstone CA, Feng JY, Parsons WE. Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. J Lipid Res. 2000;41:697–705.
    1. Shukla A, Brandsch C, Bettzieche A, Hirche F, Stangl GI, Eder K. Isoflavone-poor soy protein alters the lipid metabolism of rats by SREBP-mediated down-regulation of hepatic genes. J Nutr Biochem. 2007;18:313–321. doi: 10.1016/j.jnutbio.2006.05.007.
    1. Tovar AR, Murguia F, Cruz C, Hernandez-Pando R, Aguilar-Salinas CA, Pedraza-Chaverri J, Correa-Rotter R, Torres N. A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J Nutr. 2002;132:2562–2569.
    1. Wang Y, Jones PJ, Ausman LM, Lichtenstein AH. Soy protein reduces triglyceride levels and triglyceride fatty acid fractional synthesis rate in hypercholesterolemic subjects. Atherosclerosis. 2004;173:269–275. doi: 10.1016/j.atherosclerosis.2003.12.015.
    1. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241–247.
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.
    1. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.
    1. Jones PJ, Leitch CA, Li ZC, Connor WE. Human cholesterol synthesis measurement using deuterated water. Theoretical and procedural considerations. Arterioscler Thromb. 1993;13:247–253.
    1. Jones PJ. Use of deuterated water for measurement of short-term cholesterol synthesis in humans. Can J Physiol Pharmacol. 1990;68:955–959.

Source: PubMed

3
Předplatit