Quantification of Retinal Vessel Myogenic Constriction in Response to Blood Pressure Peaks: Implications for Flicker Light-Induced Dilatation

Lukas Streese, Anja Vaes, Denis Infanger, Ralf Roth, Henner Hanssen, Lukas Streese, Anja Vaes, Denis Infanger, Ralf Roth, Henner Hanssen

Abstract

Background/aims: Flicker-light induced retinal vessel dilatation (FID), a marker of microvascular endothelial function, has been shown to be blunted in sedentary cardiovascular risk patients (SR) as well as healthy physically active individuals (HA). This study aimed to quantify the retinal myogenic response to blood pressure (BP) peaks and its effects on consecutive FID for differentiation of microvascular health.

Methods: Ten HA and eleven SR with a previously established restriction of arteriolar FID (aFID) (<2.2%) were invited in order to assess BP-induced myogenic constriction following a standardized handgrip task and a consecutive FID. BP was measured beat-to-beat.

Results: The complete dataset of nine HA (3 female, mean age 65 years) and nine SR (5 female, mean age 61 years) individuals was analyzed. The central retinal arteriolar diameter equivalent (CRAE) was 183 ± 11 μm for HA and 176 ± 20 μm for SR. Initial baseline aFID was 1.6 ± 0.4% in HA and 1.6 ± 0.7% in SR. Systolic (p = 0.334) and diastolic (p = 0.245) BP increase following the handgrip task was in the range of 20-30% and comparable in both groups. BP increase was followed by a significantly higher arteriolar (-2.9 ± 1.3% vs. -1.3 ± 0.6%, p < 0.01) myogenic constriction in HA compared to SR. Moreover, in the consecutive assessment of FID directly after the BP-induced vessel constriction, aFID (4.1 ± 2.0% vs. 1.6 ± 0.9%, p < 0.01) was higher in HA compared to SR.

Conclusion: Initial baseline aFID was blunted in HA and SR. Retinal myogenic constriction was impaired in SR compared to HA. The consecutive aFID after BP-induced myogenic constriction recovered in HA but remained blunted in SR. Additional assessment of retinal myogenic constriction needs to be considered to improve CV risk stratification and reduce false-positive findings of endothelial dysfunction in otherwise healthy active individuals.

Clinical trial registration: ClinicalTrials.gov: NCT03986892 (https://ichgcp.net/clinical-trials-registry/NCT03986892).

Keywords: baseline diameter; cardiovascular risk; endothelial function; microvascular dysfunction; retinal vessel analysis.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Streese, Vaes, Infanger, Roth and Hanssen.

Figures

FIGURE 1
FIGURE 1
Examples of arteriolar median curves for DVA protocol I (A) and DVA protocol II (B). DVA protocol I consisted of 50 s baseline recording followed by 20 s flicker light application and 80 s at rest (A). DVA protocol II consisted of 50 s baseline recording, 40 s handgrip strength task at 30% 1RM, 30 s all-out handgrip strength task, 10 s at rest followed by 20 s of flicker light and a rest period of 80 s. DVA, dynamic retinal vessel analysis; aFID, maximal arteriolar flicker light-induced dilatation; aCON, maximal arteriolar vessel constriction after flicker stimulation; aMC, maximal arteriolar myogenic constriction before the flicker; aRA, maximal arteriolar range between arteriolar myogenic constriction and aFID; 1RM, one repetition maximum; BP, blood pressure.
FIGURE 2
FIGURE 2
Setup for dynamic retinal vessel analysis (DVA) with the Dynamic Vessel Analyzer (DVA®; Imedos Systems GmbH, Jena, Germany) and a fundus camera (450FF, Carl Zeiss, Jena, Germany). Blood pressure was measured beat-to-beat on the middle finger of the right hand with the Finapres® (Finapres Medical Systems B.V., Enschede, Netherlands). The Leonardo Mechanograph GF® device (Novotec Medical GmbH, Pforzheim, Germany) on the left hand was used to increase the blood pressure of the participants. The produced power was continuously controlled using the Leonardo Mechanography BAS v4.4 software.
FIGURE 3
FIGURE 3
Arteriolar and venular median curves for DVA protocol I (A) and DVA protocol II (B) of one representative HA and SR participant. DVA protocol I consisted of 50 s baseline recording followed by 20 s flicker light application and 80 s at rest (A). DVA protocol II consisted of 50 s baseline recording, 40 s handgrip strength task at 30% 1RM, 30 s all-out handgrip strength task, 10 s at rest followed by 20 s of flicker light and a rest period of 80 s. DVA; dynamic retinal vessel analysis; HA, healthy active; SR, sedentary patients with increased cardiovascular risk.
FIGURE 4
FIGURE 4
Association of maximal arteriolar range and change in mean arteriolar pressure in healthy active individuals (HA) and sedentary cardiovascular risk patients (SR).
FIGURE 5
FIGURE 5
Example for a median time curve of arteriolar diameter and mean arteriolar pressure, calculated from three cycles of DVA protocol II of one participant. DVA; dynamic retinal vessel analysis; MAP, mean arteriolar pressure; 1RM, one repetition maximum.

References

    1. Al-Fiadh A. H., Farouque O., Kawasaki R., Nguyen T. T., Uddin N., Freeman M., et al. (2014). Retinal microvascular structure and function in patients with risk factors of atherosclerosis and coronary artery disease. Atherosclerosis 233 478–484. 10.1016/j.atherosclerosis.2013.12.044
    1. Barabas P., Augustine J., Fernandez J. A., Mcgeown J. G., Mcgahon M. K., Curtis T. M. (2020). Ion channels and myogenic activity in retinal arterioles. Curr. Top Membr. 85 187–226. 10.1016/bs.ctm.2020.01.008
    1. Blum M., Brandel C., Muller U. A. (2005). Myogenic response reduction by high blood glucose levels in human retinal arterioles. Eur. J. Ophthalmol. 15 56–61. 10.1177/112067210501500109
    1. Bonomi L., Marchini G., Marraffa M., Bernardi P., Morbio R., Varotto A. (2000). Vascular risk factors for primary open angle glaucoma - The Egna-Neumarkt study. Ophthalmology 107 1287–1293. 10.1016/s0161-6420(00)00138-x
    1. Busse R., Edwards G., Feletou M., Fleming I., Vanhoutte P. M., Weston A. H. (2002). EDHF: bringing the concepts together. Trends Pharmacol. Sci. 23 374–380. 10.1016/s0165-6147(02)02050-3
    1. Celermajer D. S., Sorensen K. E., Gooch V. M., Spiegelhalter D. J., Miller O. I., Sullivan I. D., et al. (1992). Noninvasive Detection of Endothelial Dysfunction in Children and Adults at Risk of Atherosclerosis. Lancet 340 1111–1115. 10.1016/0140-6736(92)93147-f
    1. Costa V. P., Arcieri E. S., Harris A. (2009). Blood pressure and glaucoma. Br. J. Ophthalmol. 93 1276–1282. 10.1136/bjo.2008.149047
    1. Dorner G. T., Garhofer G., Kiss B., Polska E., Polak K., Riva C. E., et al. (2003). Nitric oxide regulates retinal vascular tone in humans. Am. J. Physiol. Heart Circulatory Physiol. 285 H631–H636. 10.1152/ajpheart.00111.2003
    1. Falsini B., Riva C. E., Logean E. (2002). Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest. Ophthalmol. Vis. Sci. 43 2309–2316.
    1. Flammer J., Konieczka K., Bruno R. M., Virdis A., Flammer A. J., Taddei S. (2013). The eye and the heart. Eur. Heart J. 34 1270–1278. 10.1093/eurheartj/eht023
    1. Green D. J., Rowley N., Spence A., Carter H., Whyte G., George K., et al. (2013). Why isn’t flow-mediated dilation enhanced in athletes? Med. Sci. Sports Exerc. 45 75–82. 10.1249/mss.0b013e318269affe
    1. Green D. J., Spence A., Rowley N., Thijssen D. H., Naylor L. H. (2012). Vascular adaptation in athletes: is there an ‘athlete’s artery’? Exp. Physiol. 97 295–304. 10.1113/expphysiol.2011.058826
    1. Gunthner R., Hanssen H., Hauser C., Angermann S., Lorenz G., Kemmner S., et al. (2019). Impaired Retinal Vessel Dilation Predicts Mortality in End-Stage Renal Disease. Circ. Res. Preprint. 10.1161/CIRCRESAHA.118.314318
    1. Hanssen H., Nickel T., Drexel V., Hertel G., Emslander I., Sisic Z., et al. (2011). Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 216 433–439. 10.1016/j.atherosclerosis.2011.02.009
    1. Heitmar R., Summers R. J. (2012). Assessing vascular function using dynamic retinal diameter measurements: a new insight on the endothelium. Thromb. Haemost. 107 1019–1026. 10.1160/th11-11-0810
    1. Ikram M. K., De Jong F. J., Bos M. J., Vingerling J. R., Hofman A., Koudstaal P. J., et al. (2006). Retinal vessel diameters and risk of stroke: the Rotterdam Study. Neurology 66 1339–1343. 10.1212/01.wnl.0000210533.24338.ea
    1. Jeppesen P., Sanye-Hajari J., Bek T. (2007). Increased blood pressure induces a diameter response of retinal arterioles that increases with decreasing arteriolar diameter. Invest. Ophthalmol. Vis. Sci. 48 328–331. 10.1167/iovs.06-0360
    1. Kneser M., Kohlmann T., Pokorny J., Tost F. (2009). Age related decline of microvascular regulation measured in healthy individuals by retinal dynamic vessel analysis. Med. Sci. Monit. 15 CR436–CR441.
    1. Koller A., Sun D., Kaley G. (1993). Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ. Res. 72 1276–1284. 10.1161/01.res.72.6.1276
    1. Kotliar K. E., Lanzl I. M., Schmidt-Trucksass A., Sitnikova D., Ali M., Blume K., et al. (2011). Dynamic retinal vessel response to flicker in obesity: A methodological approach. Microvasc. Res. 81 123–128. 10.1016/j.mvr.2010.11.007
    1. Kuchan M. J., Frangos J. A. (1993). Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol. 264 H150–H156. 10.1152/ajpheart.1993.264.1.H150
    1. Li W., Schram M. T., Berendschot T., Webers C. A. B., Kroon A. A., Van Der Kallen C. J. H., et al. (2020). Type 2 diabetes and HbA1c are independently associated with wider retinal arterioles: the Maastricht study. Diabetologia 63 1408–1417. 10.1007/s00125-020-05146-z
    1. Machalinska A., Pius-Sadowska E., Babiak K., Salacka A., Safranow K., Kawa M. P., et al. (2018). Correlation between Flicker-Induced Retinal Vessel Vasodilatation and Plasma Biomarkers of Endothelial Dysfunction in Hypertensive Patients. Curr. Eye Res. 43 128–134. 10.1080/02713683.2017.1358372
    1. Martin C. M., Beltran-Del-Rio A., Albrecht A., Lorenz R. R., Joyner M. J. (1996). Local cholinergic mechanisms mediate nitric oxide-dependent flow-induced vasorelaxation in vitro. Am. J. Physiol. 270 H442–H446. 10.1152/ajpheart.1996.270.2.H442
    1. McGeechan K., Liew G., Macaskill P., Irwig L., Klein R., Klein B. E., et al. (2009). Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis. Am. J. Epidemiol. 170 1323–1332. 10.1093/aje/kwp306
    1. Montero D., Obert P., Walther G. (2013). Enhanced conduit artery flow-mediated dilation in elite athletes: false or reality? [corrected]. Med. Sci. Sports Exerc. 45:1219. 10.1249/mss.0b013e31828d5ffc
    1. Nagele M. P., Barthelmes J., Ludovici V., Cantatore S., Frank M., Ruschitzka F., et al. (2018a). Retinal microvascular dysfunction in hypercholesterolemia. J. Clin. Lipidol. 12 1523.e–1531.e. 10.1016/j.jacl.2018.07.015
    1. Nagele M. P., Barthelmes J., Ludovici V., Cantatore S., Von Eckardstein A., Enseleit F., et al. (2018b). Retinal microvascular dysfunction in heart failure. Eur. Heart J. 39 47–56. 10.1093/eurheartj/ehx565
    1. Neumann T., Baertschi M., Vilser W., Drinda S., Franz M., Bruckmann A., et al. (2016). Retinal vessel regulation at high altitudes. Clin. Hemorheol. Microcirculat. 63 281–292. 10.3233/ch-162041
    1. Nussbaumer M., Donath L., Fischer M., Schafer J., Faude O., Zahner L., et al. (2014). Effects of acute bouts of endurance exercise on retinal vessel diameters are age and intensity dependent. Age 36:9650. 10.1007/s11357-014-9650-3
    1. Patel S. R., Bellary S., Karimzad S., Gherghel D. (2016). Overweight status is associated with extensive signs of microvascular dysfunction and cardiovascular risk. Sci. Rep. 6:32282. 10.1038/srep32282
    1. Polak K., Schmetterer L., Riva C. E. (2002). Influence of flicker frequency on flicker-induced changes of retinal vessel diameter. Invest. Ophthalmol. Vis. Sci. 43 2721–2726.
    1. Pournaras C. J., Rungger-Brandle E., Riva C. E., Hardarson H., Stefansson E. (2008). Regulation of retinal blood flow in health and disease. Prog. Retinal Eye Res. 27 284–330. 10.1016/j.preteyeres.2008.02.002
    1. Rembold K. E., Ayers C. R., Wills M. B., Rembold C. M. (2003). Usefulness of carotid intimal medial thickness and flow-mediated dilation in a preventive cardiovascular practice. Am. J. Cardiol. 91:A1478. 10.1016/S0002-9149(03)00403-X
    1. Seidelmann S. B., Claggett B., Bravo P. E., Gupta A., Farhad H., Klein B. E., et al. (2016). Retinal Vessel Calibers in Predicting Long-Term Cardiovascular Outcomes: The Atherosclerosis Risk in Communities Study. Circulation 134 1328–1338. 10.1161/circulationaha.116.023425
    1. Seshadri S., Ekart A., Gherghel D. (2016). Ageing effect on flicker-induced diameter changes in retinal microvessels of healthy individuals. Acta Ophthalmol. 94 35–42e. 10.1111/aos.12786
    1. Sorensen B. M., Houben A. J., Berendschot T. T., Schouten J. S., Kroon A. A., Van Der Kallen C. J., et al. (2016). Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study. Circulation 134 1339–1352. 10.1161/circulationaha.116.023446
    1. Streese L., Deiseroth A., Schafer J., Schmidt-Trucksass A., Hanssen H. (2018). Exercise, Arterial Crosstalk-Modulation, and Inflammation in an Aging Population: The ExAMIN AGE Study. Front. Physiol. 9:116. 10.3389/fphys.2018.00116
    1. Streese L., Khan A. W., Deiseroth A., Hussain S., Suades R., Tiaden A., et al. (2020a). High-intensity interval training modulates retinal microvascular phenotype and DNA methylation of p66Shc gene: a randomized controlled trial (EXAMIN AGE). Eur. Heart J. 41 1514–1519. 10.1093/eurheartj/ehz196
    1. Streese L., Khan A. W., Deiseroth A., Hussain S., Suades R., Tiaden A., et al. (2020b). Physical activity may drive healthy microvascular ageing via downregulation of p66(Shc). Eur. J. Prevent. Cardiol. 27 168–176. 10.1177/2047487319880367
    1. Streese L., Kotliar K., Deiseroth A., Infanger D., Vilser W., Hanssen H. (2019). Retinal Endothelial Function, Physical Fitness and Cardiovascular Risk: A Diagnostic Challenge. Front. Physiol. 10:831. 10.3389/fphys.2019.00831
    1. Tecilazich F., Feke G. T., Mazzantini S., Sobrin L., Lorenzi M. (2016). Defective Myogenic Response of Retinal Vessels Is Associated With Accelerated Onset of Retinopathy in Type 1 Diabetic Individuals. Invest. Ophthalmol. Vis. Sci. 57 1523–1529. 10.1167/iovs.15-18356
    1. Wang J. J., Liew G., Klein R., Rochtchina E., Knudtson M. D., Klein B. E., et al. (2007). Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations. Eur. Heart J. 28 1984–1992. 10.1093/eurheartj/ehm221
    1. Wong T. Y., Klein R., Sharrett A. R., Duncan B. B., Couper D. J., Tielsch J. M., et al. (2002). Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis Risk in Communities Study. JAMA 287 1153–1159. 10.1001/jama.287.9.1153
    1. World-Medical-Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310 2191–2194. 10.1001/jama.2013.281053

Source: PubMed

3
Předplatit