Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption

Antje Damms-Machado, Suparna Mitra, Asja E Schollenberger, Klaus Michael Kramer, Tobias Meile, Alfred Königsrainer, Daniel H Huson, Stephan C Bischoff, Antje Damms-Machado, Suparna Mitra, Asja E Schollenberger, Klaus Michael Kramer, Tobias Meile, Alfred Königsrainer, Daniel H Huson, Stephan C Bischoff

Abstract

Evidence suggests a correlation between the gut microbiota composition and weight loss caused by caloric restriction. Laparoscopic sleeve gastrectomy (LSG), a surgical intervention for obesity, is classified as predominantly restrictive procedure. In this study we investigated functional weight loss mechanisms with regard to gut microbial changes and energy harvest induced by LSG and a very low calorie diet in ten obese subjects (n = 5 per group) demonstrating identical weight loss during a follow-up period of six months. For gut microbiome analysis next generation sequencing was performed and faeces were analyzed for targeted metabolomics. The energy-reabsorbing potential of the gut microbiota decreased following LSG, indicated by the Bacteroidetes/Firmicutes ratio, but increased during diet. Changes in butyrate-producing bacterial species were responsible for the Firmicutes changes in both groups. No alteration of faecal butyrate was observed, but the microbial capacity for butyrate fermentation decreased following LSG and increased following dietetic intervention. LSG resulted in enhanced faecal excretion of nonesterified fatty acids and bile acids. LSG, but not dietetic restriction, improved the obesity-associated gut microbiota composition towards a lean microbiome phenotype. Moreover, LSG increased malabsorption due to loss in energy-rich faecal substrates and impairment of bile acid circulation. This trial is registered with ClinicalTrials.gov NCT01344525.

Figures

Figure 1
Figure 1
Alterations in the main phyla Bacteroidetes and Firmicutes of the human intestinal microbiota after three and six months of weight loss therapy for morbid obesity: (a) laparoscopic sleeve gastrectomy (LSG) and (b) very low calorie diet (VLCD).
Figure 2
Figure 2
Human gut microbiota changes on the taxonomic species level induced by weight loss therapy for morbid obesity: (a) laparoscopic sleeve gastrectomy (LSG) and (b) very low calorie diet (VLCD). Shown are all bacterial species for which changes were significantly defined as a P(corr) > 0.75 or <−0.75 derived from OPLS-DA models.
Figure 3
Figure 3
KEGG orthologues representing the microbial metabolic capacity of the human gut microbiota for butyrate fermentation after weight loss therapy for morbid obesity: (a) laparoscopic sleeve gastrectomy (LSG) and (b) very low calorie diet (VLCD). Shown are three KEGG orthologues (K00074, K00929, and K00626) with key functions in the fermentation pathway denoted in the KEGG map extract on the right bottom corner.
Figure 4
Figure 4
Faecal excretion of middle- and long chain nonesterified fatty acids (NEFAs): (a) mean fold changes of NEFA excretion 6 months after weight loss therapy for morbid obesity (light grey: laparoscopic sleeve gastrectomy (LSG) and dark grey: very low calorie diet (VLCD)). (b) Summed faecal concentrations of NEFAs in the course after laparoscopic sleeve gastrectomy (LSG).
Figure 5
Figure 5
Faecal bile acids alterations six months after laparoscopic sleeve gastrectomy (LSG). OPLS-DA coefficient plot showing the increase or decrease in concentration for each of the bile acids identified by targeted profiling. The model compares 6 months post-LSG with preoperative values. The coefficient along the y-axis is a measure of both the magnitude and direction of change of bile acid concentrations. ∗ indicates which metabolites contribute significantly to class discrimination (pre- to post-LSG; P(corr) > 0.75 and P(corr) < −0.75) corresponding to the color scale code shown on the left hand. Error bars derived from calculation of Jack-knifing uncertainty measures. (b) Suggested impact of LSG on extrahepatic bile acid circulation based on the presented data.

References

    1. Swinburn B. A., Sacks G., Hall K. D., et al. The global obesity pandemic: shaped by global drivers and local environments. The Lancet. 2011;378(9793):804–814. doi: 10.1016/S0140-6736(11)60813-1.
    1. WHO. Fact Sheet. 311. Geneva, Switzerland: World Health Organization; 2012. Obesity and overweight.
    1. Kral J. G., Kava R. A., Catalano P. M., Moore B. J. Severe obesity: the neglected epidemic. Obesity Facts. 2012;5(2):254–269. doi: 10.1159/000338566.
    1. Sjöström L., Peltonen M., Jacobson P., et al. Bariatric surgery and long-term cardiovascular events. Journal of the American Medical Association. 2012;307(1):56–65. doi: 10.1001/jama.2011.1914.
    1. Mitka M. Bariatric surgery continues to show benefits for patients with diabetes. Journal of the American Medical Association. 2012;307(18):1901–1902. doi: 10.1001/jama.2012.3727.
    1. Buchwald H., Oien D. M. Metabolic/bariatric surgery worldwide 2008. Obesity Surgery. 2009;19(12):1605–1611. doi: 10.1007/s11695-009-0014-5.
    1. Buchwald H., Buchwald J. N. Evolution of operative procedures for the management of morbid obesity 1950–2000. Obesity Surgery. 2002;12(5):705–717. doi: 10.1381/096089202321019747.
    1. Buchwald H., Oien D. M. Metabolic/bariatric surgery worldwide 2011. Obesity Surgery. 2013;23(4):427–436. doi: 10.1007/s11695-012-0864-0.
    1. Abu-Jaish W., Rosenthal R. J. Sleeve gastrectomy: a new surgical approach for morbid obesity. Expert Review of Gastroenterology and Hepatology. 2010;4(1):101–119. doi: 10.1586/egh.09.68.
    1. Chambers A. P., Jessen L., Ryan K. K., et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–958. doi: 10.1053/j.gastro.2011.05.050.
    1. Peterli R., Wölnerhanssen B., Peters T., et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Annals of Surgery. 2009;250(2):234–241. doi: 10.1097/SLA.0b013e3181ae32e3.
    1. Shi X., Karmali S., Sharma A. M., Birch D. W. A review of Laparoscopic sleeve gastrectomy for morbid obesity. Obesity Surgery. 2010;20(8):1171–1177. doi: 10.1007/s11695-010-0145-8.
    1. Gumbs A. A., Gagner M., Dakin G., Pomp A. Sleeve gastrectomy for morbid obesity. Obesity Surgery. 2007;17(7):962–969. doi: 10.1007/s11695-007-9151-x.
    1. Akkary E. Bariatric surgery evolution from the malabsorptive to the hormonal era. Obesity Surgery. 2012;22(5):827–831. doi: 10.1007/s11695-012-0623-2.
    1. Melissas J., Daskalakis M., Koukouraki S., et al. Sleeve gastrectomy—a “food limiting” operation. Obesity Surgery. 2008;18(10):1251–1256. doi: 10.1007/s11695-008-9634-4.
    1. Braghetto I., Davanzo C., Korn O., et al. Scintigraphic evaluation of gastric emptying in obese patients submitted to sleeve gastrectomy compared to normal subjects. Obesity Surgery. 2009;19(11):1515–1521. doi: 10.1007/s11695-009-9954-z.
    1. Shah S., Shah P., Todkar J., Gagner M., Sonar S., Solav S. Prospective controlled study of effect of laparoscopic sleeve gastrectomy on small bowel transit time and gastric emptying half-time in morbidly obese patients with type 2 diabetes mellitus. Surgery for Obesity and Related Diseases. 2010;6(2):152–157. doi: 10.1016/j.soard.2009.11.019.
    1. Baumann T., Kuesters S., Grueneberger J., et al. Time-resolved MRI after ingestion of liquids reveals motility changes after laparoscopic sleeve gastrectomy—preliminary results. Obesity Surgery. 2011;21(1):95–101. doi: 10.1007/s11695-010-0317-6.
    1. Melissas J., Leventi A., Klinaki I., et al. Alterations of global gastrointestinal motility after sleeve gastrectomy: a prospective study. Annals of Surgery. 2013;258(6):976–982. doi: 10.1097/SLA.0b013e3182774522.
    1. Chandarana K., Batterham R. L. Metabolic insights from cutting the gut. Nature Medicine. 2012;18(5):668–669. doi: 10.1038/nm.2748.
    1. Jumpertz R., Le D. S., Turnbaugh P. J., et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American Journal of Clinical Nutrition. 2011;94(1):58–65. doi: 10.3945/ajcn.110.010132.
    1. Duncan S. H., Belenguer A., Holtrop G., Johnstone A. M., Flint H. J., Lobley G. E. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology. 2007;73(4):1073–1078. doi: 10.1128/AEM.02340-06.
    1. Li J. V., Ashrafian H., Bueter M., et al. Metabolic surgery profoundly influences gut microbial—host metabolic cross-talk. Gut. 2011;60(9):1214–1223. doi: 10.1136/gut.2010.234708.
    1. Zhang H., DiBaise J. K., Zuccolo A., et al. Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(7):2365–2370. doi: 10.1073/pnas.0812600106.
    1. Furet J.-P., Kong L.-C., Tap J., et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–3057. doi: 10.2337/db10-0253.
    1. Runkel N., Colombo-Benkmann M., Hüttl T. P., Tigges H., Mann O., Sauerland S. Bariatric surgery. Deutsches Ärzteblatt. 2011;108(20):341–346. doi: 10.3238/arztebl.2011.0341.
    1. Hauner H., Bucholz G., Hamann A., et al. Evidence-Based Guideline: Prevention and Therapy of Obesity. German Obesity Society, German Diabetes Society, German Society for Nutrition, German Society for Nutritional Medicine; 2007. .
    1. Kueper M. A., Kramer K. M., Kirschniak A., Königsrainer A., Pointner R., Granderath F. A. Laparoscopic sleeve gastrectomy: standardized technique of a potential stand-alone bariatric procedure in morbidly obese patients. World Journal of Surgery. 2008;32(7):1462–1465. doi: 10.1007/s00268-008-9548-2.
    1. Snyder-Marlow G., Taylor D., Lenhard M. J. Nutrition care for patients undergoing laparoscopic sleeve gastrectomy for weight loss. Journal of the American Dietetic Association. 2010;110(4):600–607. doi: 10.1016/j.jada.2009.12.022.
    1. Gjessing H. R., Nielsen H. J., Mellgren G., Gudbrandsen O. A. Energy intake, nutritional status and weight reduction in patients one year after laparoscopic sleeve gastrectomy. SpringerPlus. 2013;2, article 352 doi: 10.1186/2193-1801-2-352.
    1. Andreu A., Moizé V., Rodríguez L., Flores L., Vidal J. Protein intake, body composition, and protein status following bariatric surgery. Obesity Surgery. 2010;20(11):1509–1515. doi: 10.1007/s11695-010-0268-y.
    1. Bischoff S. C., Damms-Machado A., Betz C., et al. Multicenter evaluation of an interdisciplinary 52-week weight loss program for obesity with regard to body weight, comorbidities and quality of life—a prospective study. International Journal of Obesity. 2012;36(4):614–624. doi: 10.1038/ijo.2011.107.
    1. Mitra S., Foerster-Fromme K., Damms-Machado A., et al. Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing. BMC Genomics. 2013;14, article S16
    1. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. GenBank. Nucleic Acids Research. 2005;33:D34–D38. doi: 10.1093/nar/gki063.
    1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. Journal of Molecular Biology. 1990;215(3):403–410. doi: 10.1006/jmbi.1990.9999.
    1. Huson D. H., Mitra S., Ruscheweyh H.-J., Weber N., Schuster S. C. Integrative analysis of environmental sequences using MEGAN4. Genome Research. 2011;21(9):1552–1560. doi: 10.1101/gr.120618.111.
    1. Unterwurzacher I., Koal T., Bonn G. K., Weinberger K. M., Ramsay S. L. Rapid sample preparation and simultaneous quantitation of prostaglandins and lipoxygenase derived fatty acid metabolites by liquid chromatography-mass spectrometry from small sample volumes. Clinical Chemistry and Laboratory Medicine. 2008;46(11):1589–1597. doi: 10.1515/CCLM.2008.323.
    1. Rantalainen M., Cloarec O., Beckonert O., et al. Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. Journal of Proteome Research. 2006;5(10):2642–2655. doi: 10.1021/pr060124w.
    1. Nadal I., Santacruz A., Marcos A., et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. International Journal of Obesity. 2009;33(7):758–767. doi: 10.1038/ijo.2008.260.
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi: 10.1038/4441022a.
    1. Langer F. B., Hoda M. A. R., Bohdjalian A., et al. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obesity Surgery. 2005;15(7):1024–1029. doi: 10.1381/0960892054621125.
    1. Li J. V., Reshat R., Wu Q., et al. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Frontiers in Microbiology. 2011;2, article 183 doi: 10.3389/fmicb.2011.00183.
    1. Mutch D. M., Fuhrmann J. C., Rein D., et al. Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery. PLoS ONE. 2009;4(11) doi: 10.1371/journal.pone.0007905.e7905
    1. Munukka E., Wiklund P., Pekkala S., et al. Women with and without metabolic disorder differ in their gut microbiota composition. Obesity. 2012;20(5):1082–1087. doi: 10.1038/oby.2012.8.
    1. Tremaroli V., Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–249. doi: 10.1038/nature11552.
    1. Parnell J. A., Reimer R. A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. American Journal of Clinical Nutrition. 2009;89(6):1751–1759. doi: 10.3945/ajcn.2009.27465.
    1. Cani P. D., Lecourt E., Dewulf E. M., et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. The American Journal of Clinical Nutrition. 2009;90(5):1236–1243. doi: 10.3945/ajcn.2009.28095.
    1. Delzenne N. M., Neyrinck A. M., Cani P. D. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories. 2011;10(supplement 1, article S10) doi: 10.1186/1475-2859-10-S1-S10.
    1. Cummings J. H., Wiggins H. S., Jenkins D. J. A., et al. Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid, and fat excretion. Journal of Clinical Investigation. 1978;61(4):953–963. doi: 10.1172/JCI109020.
    1. Kumar R., Lieske J. C., Collazo-Clavell M. L., et al. Fat malabsorption and increased intestinal oxalate absorption are common after roux-en-Y gastric bypass surgery. Surgery. 2011;149(5):654–661. doi: 10.1016/j.surg.2010.11.015.
    1. Canales B. K., Ellen J., Khan S. R., Hatch M. Steatorrhea and hyperoxaluria occur after gastric bypass surgery in obese rats regardless of dietary fat or oxalate. The Journal of Urology. 2013;190(3):1102–1109. doi: 10.1016/j.juro.2013.02.3229.

Source: PubMed

3
Předplatit