An Innovative Field-Applicable Molecular Test to Diagnose Cutaneous Leishmania Viannia spp. Infections

Omar A Saldarriaga, Alejandro Castellanos-Gonzalez, Renato Porrozzi, Gerald C Baldeviano, Andrés G Lescano, Maxy B de Los Santos, Olga L Fernandez, Nancy G Saravia, Erika Costa, Peter C Melby, Bruno L Travi, Omar A Saldarriaga, Alejandro Castellanos-Gonzalez, Renato Porrozzi, Gerald C Baldeviano, Andrés G Lescano, Maxy B de Los Santos, Olga L Fernandez, Nancy G Saravia, Erika Costa, Peter C Melby, Bruno L Travi

Abstract

Cutaneous and mucosal leishmaniasis is widely distributed in Central and South America. Leishmania of the Viannia subgenus are the most frequent species infecting humans. L. (V.) braziliensis, L. (V.) panamensis are also responsible for metastatic mucosal leishmaniasis. Conventional or real time PCR is a more sensitive diagnostic test than microscopy, but the cost and requirement for infrastructure and trained personnel makes it impractical in most endemic regions. Primary health systems need a sensitive and specific point of care (POC) diagnostic tool. We developed a novel POC molecular diagnostic test for cutaneous leishmaniasis caused by Leishmania (Viannia) spp. Parasite DNA was amplified using isothermal Recombinase Polymerase Amplification (RPA) with primers and probes that targeted the kinetoplast DNA. The amplification product was detected by naked eye with a lateral flow (LF) immunochromatographic strip. The RPA-LF had an analytical sensitivity equivalent to 0.1 parasites per reaction. The test amplified the principal L. Viannia species from multiple countries: L. (V.) braziliensis (n = 33), L. (V.) guyanensis (n = 17), L. (V.) panamensis (n = 9). The less common L. (V.) lainsoni, L. (V.) shawi, and L. (V.) naiffi were also amplified. No amplification was observed in parasites of the L. (Leishmania) subgenus. In a small number of clinical samples (n = 13) we found 100% agreement between PCR and RPA-LF. The high analytical sensitivity and clinical validation indicate the test could improve the efficiency of diagnosis, especially in chronic lesions with submicroscopic parasite burdens. Field implementation of the RPA-LF test could contribute to management and control of cutaneous and mucosal leishmaniasis.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Sensitivity of RPA-LF to detect…
Fig 1. Sensitivity of RPA-LF to detect L. viannia spp. compared with real-time PCR (the current gold standard).
Ten-fold serial dilutions of parasite DNA, extracted with Qiagen DNeasy blood and tissue kit, were amplified by qPCR (SYBRgreen) (A) or RPA-LF (B). W = water. The control band is the upper band, while the test band is the lower band.
Fig 2. Specificity of RPA-LF to amplify…
Fig 2. Specificity of RPA-LF to amplify species of the Viannia subgenus.
A) The most relevant L. Viannia species (L. braziliensis, L. guyanensis, L. panamensis) produced stronger bands in the lateral flow strip than other less common species of this subgenus. B) Species of the Leishmania subgenus, Trypanosoma cruzi, and human DNA were not amplified by the RPA-LF test. NTC = no template control.
Fig 3. RPA-LF amplification of clinical samples…
Fig 3. RPA-LF amplification of clinical samples using a simplified DNA extraction method.
Samples from patients suspected of having cutaneous leishmaniasis were obtained by pressing Whatman FTA filter paper (two 6 mm diameter discs) over the dermal lesions. Two, 3 mm diameter papers were cut from the original samples using a punch, washed thrice with FTA washing reagent and twice with TE buffer pH 8. A 2.5 μL aliquot was amplified by RPA and subsequently read using a lateral flow strip. Patients infected with Leishmania Viannia spp. (L. lainsoni, L. braziliensis) were readily detected. The test did not amplify a strain originally labeled as Leishmania sp. in NAMRU-6, Peru. Presumably, it did not belong to the Viannia subgenus as confirmed by real-time PCR at UTMB. There was agreement between NAMRU-6 and UTMB labs with regard to the negative clinical samples. L. lainsoni was used as positive control; the negative control was run without template.

References

    1. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, et al. (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671 10.1371/journal.pone.0035671
    1. Weigle K, Saravia NG (1996) Natural history, clinical evolution, and the host-parasite interaction in New World cutaneous leishmaniasis. Clinics in dermatology 14: 433–450.
    1. Blum J, Lockwood DN, Visser L, Harms G, Bailey MS, et al. (2012) Local or systemic treatment for New World cutaneous leishmaniasis? Re-evaluating the evidence for the risk of mucosal leishmaniasis. Int Health 4: 153–163. 10.1016/j.inhe.2012.06.004
    1. Weigle KA, de Davalos M, Heredia P, Molineros R, Saravia NG, et al. (1987) Diagnosis of cutaneous and mucocutaneous leishmaniasis in Colombia: a comparison of seven methods. Am J Trop Med Hyg 36: 489–496.
    1. Barroso-Freitas AP, Passos SR, Mouta-Confort E, Madeira MF, Schubach AO, et al. (2009) Accuracy of an ELISA and indirect immunofluorescence for the laboratory diagnosis of American tegumentary leishmaniasis. Trans R Soc Trop Med Hyg 103: 383–389. 10.1016/j.trstmh.2008.12.019
    1. Romero LI, Paz HM, Ortega-Barria E, Bayard V, Hochberg LP, et al. (2004) Evaluation of serological assays based on a novel excreted antigen preparation for the diagnosis of Cutaneous Leishmaniasis in Panama. J Microbiol Methods 57: 391–397.
    1. Adams ER, Gomez MA, Scheske L, Rios R, Marquez R, et al. (2014) Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR. Parasitology 141: 1891–1897. 10.1017/S0031182014001280
    1. Castellanos-Gonzalez A, Saldarriaga OA, Tartaglino L, Gacek R, Temple E, et al. (2015) A Novel Molecular Test to Diagnose Canine Visceral Leishmaniasis at the Point of Care. The American journal of tropical medicine and hygiene: 15–0145.
    1. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4: e204
    1. Pita-Pereira D, Lins R, Oliveira MP, Lima RB, Pereira BA, et al. (2012) SYBR Green-based real-time PCR targeting kinetoplast DNA can be used to discriminate between the main etiologic agents of Brazilian cutaneous and visceral leishmaniases. Parasit Vectors 5: 15 10.1186/1756-3305-5-15
    1. Harris E, Kropp G, Belli A, Rodriguez B, Agabian N (1998) Single-step multiplex PCR assay for characterization of New World Leishmania complexes. Journal of Clinical Microbiology 36: 1989–1995.
    1. Organization WH (2010) Control of the leishmaniases. World Health Organization technical report series: xii.
    1. Arevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, et al. (2007) Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis 195: 1846–1851.
    1. Llanos-Cuentas A, Tulliano G, Araujo-Castillo R, Miranda-Verastegui C, Santamaria-Castrellon G, et al. (2008) Clinical and parasite species risk factors for pentavalent antimonial treatment failure in cutaneous leishmaniasis in Peru. Clin Infect Dis 46: 223–231. 10.1086/524042
    1. Lainson R, Braga R, De Souza A, Povoa M, Ishikawa E, et al. (1989) Leishmania (Viannia) shawi sp. n., a parasite of monkeys, sloths and procyonids in Amazonian Brazil. Annales de parasitologie humaine et comparée 64: 200
    1. Shaw J, Ishikawa E, Lainson R, Braga R, Silveira F (1990) Cutaneous leishmaniasis of man due to Leishmania (Viannia) shawi Lainson, de Souza, Povoa, Ishikawa & Silveira, in Para State, Brazil. Annales de parasitologie humaine et comparée 66: 243–246.
    1. Brito ME, Andrade MS, Mendonca MG, Silva CJ, Almeida EL, et al. (2009) Species diversity of Leishmania (Viannia) parasites circulating in an endemic area for cutaneous leishmaniasis located in the Atlantic rainforest region of northeastern Brazil. Trop Med Int Health 14: 1278–1286. 10.1111/j.1365-3156.2009.02361.x
    1. Naiff RD, Freitas RA, Naiff MF, Arias JR, Barrett TV, et al. (1991) Epidemiological and nosological aspects of Leishmania naiffi Lainson & Shaw, 1989. Mem Inst Oswaldo Cruz 86: 317–321.
    1. Pratlong F, Deniau M, Darie H, Eichenlaub S, Proll S, et al. (2002) Human cutaneous leishmaniasis caused by Leishmania naiffi is wide-spread in South America. Ann Trop Med Parasitol 96: 781–785.
    1. Veland N, Boggild AK, Valencia C, Valencia BM, Llanos-Cuentas A, et al. (2012) Leishmania (Viannia) species identification on clinical samples from cutaneous leishmaniasis patients in Peru: assessment of a molecular stepwise approach. Journal of clinical microbiology 50: 495–498. 10.1128/JCM.05061-11

Source: PubMed

3
Předplatit