Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Cascara Beverage: Melanoidins and Acrylamide

Amaia Iriondo-DeHond, Ana Sofía Elizondo, Maite Iriondo-DeHond, Maria Belén Ríos, Romina Mufari, Jose A Mendiola, Elena Ibañez, Maria Dolores Del Castillo, Amaia Iriondo-DeHond, Ana Sofía Elizondo, Maite Iriondo-DeHond, Maria Belén Ríos, Romina Mufari, Jose A Mendiola, Elena Ibañez, Maria Dolores Del Castillo

Abstract

Our research aimed to evaluate the formation of Maillard reaction products in sun-dried coffee cascara and their impact on the safety and health promoting properties of a novel beverage called "Instant Cascara" (IC) derived from this coffee by-product. Maillard reaction products in sun-dried coffee cascara have never been reported. "Instant Cascara" (IC) extract was obtained by aqueous extraction and freeze-drying. Proteins, amino acids, lipids, fatty acid profile, sugars, fiber, minerals, and vitamins were analyzed for its nutritional characterization. Acrylamide and caffeine were used as chemical indicators of safety. Colored compounds, also called melanoidins, their stability under 40 °C and in light, and their in vitro antioxidant capacity were also studied. A safe instant beverage with antioxidant properties was obtained to which the following nutritional claims can be assigned: "low fat", "low sugar" "high fiber" and "source of potassium, magnesium and vitamin C". For the first time, cascara beverage color was attributed to the presence of antioxidant melanoidins (>10 kDa). IC is a potential sustainable alternative for instant coffee, with low caffeine and acrylamide levels and a healthy composition of nutrients and antioxidants.

Keywords: Maillard reaction; acrylamide; coffee cascara; food safety; instant beverage; melanoidins.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Photosensitivity and heat resistance of IC at 4 mg/mL, IC at 10 mg/mL and Tabifruit. (A) Color differences (colorizer.org as a tool for color generation [34]); (B) pH; (C) Total antioxidant capacity (TAC) determined by ABTS; (D) Total phenolic content (TPC). Bars represent the mean values and the error bars denote the standard deviation. Different letters on bars indicate significant differences in each beverage sample (Tukey Test, p < 0.05).

References

    1. Cagliero C., Ho T.D., Zhang C., Bicchi C., Anderson J.L. Determination of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography-mass spectrometry. J. Chromatogr. A. 2016;1449:2–7. doi: 10.1016/j.chroma.2016.04.034.
    1. Tamanna N., Mahmood N. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition. Int. J. Food Sci. 2015;2015:526762. doi: 10.1155/2015/526762.
    1. Fogliano V., Morales F.J. Estimation of dietary intake of melanoidins from coffee and bread. Food Funct. 2011;2:117–123. doi: 10.1039/c0fo00156b.
    1. Mesías M., Delgado-Andrade C. Melanoidins as a potential functional food ingredient. Curr. Opin. Food Sci. 2017;14:37–42. doi: 10.1016/j.cofs.2017.01.007.
    1. Iriondo-dehond A., Ramírez B., Escobar F.V. Antioxidant properties of high molecular weight compounds from coffee roasting and brewing byproducts. Bioact. Compd. Health Dis. 2019;2:48–63. doi: 10.31989/bchd.v2i3.588.
    1. Soares C.M.D., Alves R.C., Oliveira M.B.P.P. Processing and Impact on Active Components in Food. Elsevier; Amsterdam, The Netherlands: 2015. Acrylamide in coffee; pp. 575–582.
    1. European Food Safety Authority Scientific Opinion on acrylamide in food. EFSA J. 2015;13:4104.
    1. Pedreschi F., Mariotti M.S., Granby K. Current issues in dietary acrylamide: Formation, mitigation and risk assessment. J. Sci. Food Agric. 2014;94:9–20. doi: 10.1002/jsfa.6349.
    1. Esquivel P., Jiménez V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012;46:488–495. doi: 10.1016/j.foodres.2011.05.028.
    1. Rios M.B., Iriondo-deHond A., Iriondo-deHond M., Herrera T., Velasco D., Gomez-Alonso S., Callejo M.J., del Castillo M.D. Effect of coffee cascara dietary fiber on the physicochemical, nutritional and sensory properties of a gluten-free bread formulation. Molecules. 2020;25:1358. doi: 10.3390/molecules25061358.
    1. Sanz M.L., del Castillo M.D., Corzo N., Olano A. Formation of amadori compounds in dehydrated fruits. J. Agric. Food Chem. 2001;49:5228–5231. doi: 10.1021/jf010580z.
    1. European Commission COMMISSION REGULATION (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union. 2017;204:24–44.
    1. Martínez-Saez N., Del Castillo M.D. Development of Sustainable Novel Foods and Beverages Based on Coffee By-Products for Chronic Diseases. Encycl. Food Secur. Sustain. 2018:307–315. doi: 10.1016/B978-0-08-100596-5.22136-7.
    1. Alves R.C., Rodrigues F., Nunes M.A.A., Vinha A.F., Oliveira M.B.P.P. State of the art in coffee processing by-products. In: Galanakis C., editor. Handbook of Coffee Processing By-Products: Sustainable Applications. Academic Press-Elsevier; Burlington, MA, USA: 2017. pp. 1–26.
    1. Murthy P.S., Madhava Naidu M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012;66:45–58. doi: 10.1016/j.resconrec.2012.06.005.
    1. The European Parliament and The Council of the European Union Regulation (EU) 2015/2283 on novel foods. Off. J. Eur. Union. 2015;327:1–22.
    1. EFSA Panel on Dietetic Products Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J. 2016;14:11.
    1. Alaska Health Fair I. How Much Sugar Is There in a Glass of a Powdered Mix Drink? [(accessed on 23 March 2020)]; Available online:
    1. Tahmassebi J.F., BaniHani A. Impact of soft drinks to health and economy: A critical review. Eur. Arch. Paediatr. Dent. 2020;21:109–117. doi: 10.1007/s40368-019-00458-0.
    1. del Castillo M.D., Ibañez M.E., Amigo M., Herrero M., Plaza del Moral M., Ullate M. Application of Products of Coffee Silverskin in Anti-Ageing Cosmetics and Functional Food. WO 2013/004873 2013. [(accessed on 30 March 2020)]; Available online: .
    1. Martinez-Saez N., Tamargo García A., Domínguez Pérez I., Rebollo-Hernanz M., Mesías M., Morales F.J., Martín-Cabrejas M.A., del Castillo M.D. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017;216:114–122. doi: 10.1016/j.foodchem.2016.07.173.
    1. Sukhija P.S., Palmquist D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988;36:1202–1206. doi: 10.1021/jf00084a019.
    1. Iriondo-DeHond A., Cornejo F.S., Fernandez-Gomez B., Vera G., Guisantes-Batan E., Alonso S.G., Andres M.I.S., Sanchez-Fortun S., Lopez-Gomez L., Uranga J.A., et al. Bioaccesibility, metabolism, and excretion of lipids composing spent coffee grounds. Nutrients. 2019;11:1411. doi: 10.3390/nu11061411.
    1. Iriondo-DeHond A., Rios M.B., Herrera T., Rodriguez-Bertos A., Nuñez F., San Andres M.I., Sanchez-Fortun S., del Castillo M.D. Coffee silverskin extract: Nutritional value, safety and effect on key biological functions. Nutrients. 2019;11:2693. doi: 10.3390/nu11112693.
    1. Masuko T., Minami A., Iwasaki N., Majima T., Nishimura S.-I., Lee Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005;339:69–72. doi: 10.1016/j.ab.2004.12.001.
    1. Comite Europeen de Normalisation Food Analysis—Determination of Acrylamide in Food by Liquid Chromatography Tandem Mass Spectrometry (LC-ESI-MS/MS) Comite Europeen de Normalisation; Brussels, Belgium: 2015. EN 166182015.
    1. Mastovska K., Lehotay S.J. Rapid Sample Preparation Method for LC−MS/MS or GC−MS Analysis of Acrylamide in Various Food Matrices. J. Agric. Food Chem. 2006;54:7001–7008. doi: 10.1021/jf061330r.
    1. Contini M., Baccelloni S., Massantini R., Anelli G. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem. 2008;110:659–669. doi: 10.1016/j.foodchem.2008.02.060.
    1. Wrolstad R.E., Giusti M.M. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001:F1.2.1–F1.2.13. doi: 10.1002/0471142913.faf0102s00.
    1. Tsao R., Yang R., Young C., Zhu H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC) J. Agric. Food Chem. 2003;51:6347–6353. doi: 10.1021/jf0346298.
    1. Oki T., Nagai S., Yoshinaga M., Nishiba Y., Suda I. Contribution of b-Carotene to Radical Scavenging Capacity Varies among Orange-fleshed Sweet Potato Cultivars. Food Sci. Technol. Res. 2006;12:156–160. doi: 10.3136/fstr.12.156.
    1. Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (frap) as a measure of ‘“ antioxidant power ”’: The FRAP assay. Anal. Biochem. 1996;76:70–76. doi: 10.1006/abio.1996.0292.
    1. Manzocco L., Kravina G., Calligaris S., Nicoli M.C. Shelf life modeling of photosensitive food: The case of colored beverages. J. Agric. Food Chem. 2008;56:5158–5164. doi: 10.1021/jf800072u.
    1. Sebastian Loncar Colorizer—Color Picker and Converter. [(accessed on 20 March 2020)]; Available online:
    1. Adrianzén G. Bachelor’s Thesis. Universidad Nacional José Faustino Sánchez Carrión; Huacho, Peru: 2018. Determinación De La Capacidad Antioxidante y Polifenoles Totales de la Cáscara Y Mucílago De La Especie Coffea Arábica L. Y Sus Posibles Usos.
    1. Alvarez W. Master’s Thesis. Universidad Nacional Toribio Rodríguez Mendoza de Amazonas; Chachapoyas, Peru: 2018. Evaluación De Rangos Del Espectro Caracterización Fisicoquímica De Cáscara De Café Para Alimentación Animal.
    1. Tobón Arroyave N., Cerón Cárdenas A.F., Garcés Giraldo L.F. Análisis y modelamiento de la granulometría en la cáscara del café (Coffea arabica L.) variedad Castillo. Producción+ Limpia. 2015;10:80–91. doi: 10.22507/pml.v10n2a7.
    1. Pandey A., Soccol C.R., Nigam P., Brand D., Mohan R., Roussos S. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 2000;6:153–162. doi: 10.1016/S1369-703X(00)00084-X.
    1. Elías L.G. Chemical composition of coffee-berry by-products. Coffee Pulp Compos. Technol. Util. 1979:11–16.
    1. Heeger A., Kosińska-Cagnazzo A., Cantergiani E., Andlauer W. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 2016;221:969–975. doi: 10.1016/j.foodchem.2016.11.067.
    1. Janissen B., Huynh T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018;128:110–117. doi: 10.1016/j.resconrec.2017.10.001.
    1. World Health Organization Joint WHO-FAO expert consultation on diet, nutrition, and the prevention of chronic diseases, 2002, Geneva, Switzerland. WHO Tech. Rep. Ser. 2003;916:149.
    1. Urbaneja G., Ferrer J., Paez G., Arenas L., Colina G. Acid hydrolysis and carbohydrates characterization of coffee pulp. Renew. Energy. 1996;9:1041–1044. doi: 10.1016/0960-1481(96)88458-8.
    1. Belliveau D. The Coffee Cherry Co. [(accessed on 24 March 2020)]; Available online:
    1. Bernacchia R., Preti R., Vinci G. Organic and conventional foods: Differences in nutrients. Ital. J. Food Sci. 2016;28:565–578.
    1. Ito H., Ueno H., Kikuzaki H. Nutrition and dietetic practice free amino acid compositions for fruits. J. Nutr. Diet. Pr. 2017;1:1–5.
    1. Takaoka M., Okumura S., Seki T., Ohtani M. Effect of amino-acid intake on physical conditions and skin state: A randomized, double-blind, placebo-controlled, crossover trial. J. Clin. Biochem. Nutr. 2019;65:52–58. doi: 10.3164/jcbn.18-108.
    1. Turck D., Castenmiller J., De Henauw S., Hirsch-Ernst K.I., Kearney J., Knutsen H.K., Maciuk A., Mangelsdorf I., McArdle H.J., Naska A., et al. Guidance on the scientific requirements for health claims related to muscle function and physical performance: (Revision 1) EFSA J. 2018;16
    1. Regulation EC 1924 European Community (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union. 2006:9–25.
    1. Chawla R., Patil G.R. Soluble dietary fiber. Compr. Rev. Food Sci. Food Saf. 2010;9:178–196. doi: 10.1111/j.1541-4337.2009.00099.x.
    1. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041.
    1. The european commission commission regulation (EU) No 432/2012. Off. J. Eur. Union. 2012;13
    1. European council council directive of 24 September 1990 on nutrition labelling for foodstuffs (90/496/ EEC) Off. J. Eur. Union. 1990:18–63.
    1. Hasanah U., Setyowati M., Efendi R., Safitri E., Idroes R., Heng L.Y., Sani N.D. Isolation of Pectin from coffee pulp Arabica Gayo for the development of matrices membrane. IOP Conf. Ser. Mater. Sci. Eng. 2019;523:12–14. doi: 10.1088/1757-899X/523/1/012014.
    1. USDA (United States Department of Agriculture USA) FoodData Central. [(accessed on 25 March 2020)]; Available online: .
    1. Porto A.C.V., Freitas-Silva O., de Souza E.F., Gottschalk L.M.F. Effect of asparaginase enzyme in the reduction of asparagine in green coffee. Beverages. 2019;5:32. doi: 10.3390/beverages5020032.
    1. Onishi Y., Prihanto A.A., Yano S., Takagi K., Umekawa M., Wakayama M. Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis. 3 Biotech. 2015;5:783–789. doi: 10.1007/s13205-015-0278-5.
    1. Atanda S. A Fungi and mycotoxins in stored foods. Afr. J. Microbiol. Res. 2011;5:4373–4382. doi: 10.5897/AJMR11.487.
    1. Iriondo-DeHond A., Aparicio García N., Velazquez Escobar F., San Andres M.I., Sanchez-Fortun S., Blanch G.P., Fernandez-Gomez B., Guisantes Batan E., del Castillo M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019;51:194–204. doi: 10.1016/j.ifset.2018.06.010.
    1. European Food Safety Authority (EFSA) Scientific Opinion on the safety of caffeine. EFSA J. 2015;13:1–21.
    1. del Castillo M.D., Iriondo-DeHond A., Martinez-Saez N., Fernandez-Gomez B., Iriondo-DeHond M., Zhou J.-R. Handbook of Coffee Processing By-Products. Academic Press-Elsevier; London, UK: 2017. Chapter 6—Applications of recovered compounds in food products; pp. 171–194.
    1. Murthy P.S., Naidu M.M. Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess Technol. 2012;5:897–903. doi: 10.1007/s11947-010-0363-z.
    1. Karadeniz F., Durst R.W., Wrolstad R.E. Polyphenolic composition of raisins. J. Agric. Food Chem. 2000;48:5343–5350. doi: 10.1021/jf0009753.
    1. Murthy P.S., Manjunatha M.R., Sulochannama G., Naidu M.M. Characterization and bioactivity of coffee anthocyanins. Eur. J. Biol. Sci. 2012;4:13–19.
    1. Prata E.R., Oliveira L.S. Fresh coffee husks as potential sources of anthocyanins. LWT Food Sci. Technol. 2007;40:1555–1560. doi: 10.1016/j.lwt.2006.10.003.
    1. Belay A., Gholap A. Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. Afr. J. Pure Appl. Chem. 2009;3:234–240.
    1. Tores de la Cruz S., Iriondo-DeHond A., Herrera T., Lopez-Tofiño Y., Galvez-Robleño C., Prodanov M., Velazquez-Escobar F., Abalo R., del Castillo M.D. An assessment of the bioactivity of coffee silverskin melanoidins. Foods. 2019;8:68. doi: 10.3390/foods8020068.
    1. Delgado-Andrade C., Rufián-Henares J.A., Morales F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem. 2005;53:7832–7836. doi: 10.1021/jf0512353.
    1. Pastoriza S., Rufián-Henares J.A. Contribution of melanoidins to the antioxidant capacity of the Spanish diet. Food Chem. 2014;164:438–445. doi: 10.1016/j.foodchem.2014.04.118.
    1. Bravo J., Juániz I., Monente C., Caemmerer B., Kroh L.W., De Peña M.P., Cid C. Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. J. Agric. Food Chem. 2012;60:12565–12573. doi: 10.1021/jf3040594.
    1. Torres-Valenzuela L.S., Martínez K.G., Serna-Jimenez J.A., Hernández M.C. Secado de pulpa de café: Condiciones de proceso, modelación matemática y efecto sobre propiedades fisicoquímicas. Inf. Tecnológica. 2019;30:189–200. doi: 10.4067/S0718-07642019000200189.
    1. Royle L., Radcliffe C.M. Analysis of caramels by capillary electrophoresis and ultrafiltration. J. Sci. Food Agric. 1999;79:1709–1714. doi: 10.1002/(SICI)1097-0010(199909)79:12<1709::AID-JSFA425>;2-X.
    1. Nicoli M.C., Calligaris S., Manzocco L. Shelf-life testing of coffee and related products: Uncertainties, pitfalls, and perspectives. Food Eng. Rev. 2009;1:159–168. doi: 10.1007/s12393-009-9010-8.
    1. Manzocco L., Lagazio C. Coffee brew shelf life modelling by integration of acceptability and quality data. Food Qual. Prefer. 2009;20:24–29. doi: 10.1016/j.foodqual.2008.06.005.
    1. Malvais R. Bachelor’s Thesis. Universidad Autonóma del Estado de México; Cuernavaca, Mexico: 2017. Estudio De Vida De Anaquel En Bebidas Saborizadas.
    1. Marete E.N., Jacquier J.C., O’Riordan D. Feverfew as a source of bioactives for functional foods: Storage stability in model beverages. J. Funct. Foods. 2011;3:38–43. doi: 10.1016/j.jff.2011.01.004.
    1. Michalska A., Wojdyło A., Brzezowska J., Majerska J., Ciska E. The influence of inulin on the retention of polyphenolic compounds during the drying of blackcurrant juice. Molecules. 2019;24:4167. doi: 10.3390/molecules24224167.

Source: PubMed

3
Předplatit