A guide to chemokines and their receptors

Catherine E Hughes, Robert J B Nibbs, Catherine E Hughes, Robert J B Nibbs

Abstract

The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.

Keywords: atypical chemokine receptor; cell migration; chemokine; chemokine receptor; glycosaminoglycan; immune surveillance; inflammation; leukocyte; oligomerization; protease.

© 2018 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Figures

Figure 1
Figure 1
Mammalian chemokine receptors and their known interactions with chemokines and other key secreted, cell surface, and pathogen‐encoded molecules. Chemokines of the four subclasses (CCL, CXCL, CX 3 CL, and XCL) are arranged numerically in columns and represented as numbered squares that are color‐coded according to whether they are in humans and mice, humans only, or mice only (see Key). The chemokine–chemokine ‘interactome’ 40 is not depicted. Chemokines are linked by lines to receptors that they are known to bind: yellow boxes are atypical chemokine receptors (ACKRs) (previous names shown in parentheses); green boxes are conventional chemokine receptors (cCKRs); and light green boxes show reported human cCKR variants generated by alternative splicing at the N terminus (CCR9, CXCR3, CXCR4) or C terminus (CCR2) 69, 70, 71, 72, 73, 74. The color of the linking line (see Key) indicates whether the interaction likely exists in humans only, mice only, or in humans and mice. Hashed black lines ending with a filled circle link chemokines with receptors they can antagonize 119, 120, 121, 122, 123, 124, 125, 126. CXCL14 is reported to be a positive allosteric modulator of CXCR4 344. Chemokine receptors reported to form heterodimers are linked with a black line 93, 94, 95, 96, 97, 98, 99, 100, 101, 118. Nonchemokine proteins in light pink boxes are able to activate the cCKR they are joined to by a black line 89, 90, 91, 92, 102, 347. White boxes contain microbial proteins (red text) and other host extracellular/surface proteins (black text; nonchemokine, nonchemokine receptor) that have been reported to interact, in the absence of chemokine, with the cCKR or ACKR to which they are attached by a black line [32, 92, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 147, 148, 149, 150, 151, 152, 167, 233, 264, 345, 346, 347, 348]. Note that cCKRs and ACKRs other than those shown are known to be capable of binding HIV and/or gp120, but the role of these chemokine receptors during infection is uncertain. CCL18 receptor PITPMN3 and CCL5 receptor GPR75 are also shown 127, 348. FPRL1 interacts with a peptide released proteolytically from the N terminus of one form of CCL23 20. Gray boxes show drugs in clinical use: Maraviroc 143 and Plerixafor 237, antagonists of CCR5 and CXCR4, respectively; and Mogamulizumab, a humanized anti‐CCR4 antibody approved for treatment of relapsed or refractory CCR4+ adult T‐cell leukemia/lymphoma (CTCL) 349. Definitions: ADM, adrenomedullin; ADRA1A/B, α1A/B‐adrenoreceptors; C‐18, cyclophilin‐18 of Toxoplasma gondii; CB2, cannabinoid receptor 2; DBP, Duffy binding protein of malarial parasites P. vivax and P knowlesi; DOR, delta‐opioid receptor; GluR1, component of the AMPA‐type glutamate receptor; Glyco G, RSV G glycoprotein; gp120, the gp120 envelope protein of HIV; GPR75, G protein‐coupled receptor 75; HlgAB, Staphylococcus aureus γ‐Hemolysin AB; HMGB1, high mobility group box 1 protein; KOR, kappa‐opioid receptor; LukED, S. aureus leukotoxin ED; MIF, macrophage migration inhibitory factor; MOR, mu‐opioid receptor; PITPMN3, phosphatidylinositol transfer protein 3; PSMP, PC3‐secreted microprotein; TCR, T‐cell receptor; TSG‐6, TNF‐stimulated gene 6; β2AR, β2‐adrenergic receptor. Extended from previous reviews 64, 350.
Figure 2
Figure 2
Functions of chemokines and their receptors. Biological processes reported to be regulated by chemokines and their receptors are in light blue boxes arranged clockwise, in alphabetical order (starting bottom left), around the central ‘Chemokines & Receptors’ box. ‘Cell Movement’ is depicted as the dominant biological process regulated by chemokines and their receptors: chemokine‐mediated cell arrest/adhesion, and the different types of migratory behavior known to fall under chemokine control, are shown in light green boxes.
Figure 3
Figure 3
Expression of chemokine receptor genes in selected mouse leukocytes and stromal cells. The figure was generated using transcriptomic data from The Immunological Genome Project database (http://www.immgen.org) 351. The maximum expression value was identified for the cell types shown and is indicated in the row at the bottom of the Figure in arbitrary units. For each receptor, this value was set to 100%. Estimated background values (typically between 50 and 100) were determined by examining expression graphs for all cell types on the database. Expression in the cell types shown in the left hand column was then assigned a color according to the percentage of the maximum expression value (see Key on right). Note that not all cells in a cell population will necessarily express the receptor. BM, bone marrow; DC, dendritic cell.
Figure 4
Figure 4
Expression of chemokine genes in selected mouse tissues under steady‐state conditions. By examining graphs generated on The Immunological Genome Project website (http://www.immgen.org) 351 using their transcriptomic data, the expression of each chemokine, in each of the tissues shown (left hand column), was assigned to one of the seven color‐coded ‘Expression Level Categories’ indicated in the key in the center of the Figure. Expression in the central nervous system (CNS) was estimated by examining ImmGen data on numerous component parts of the CNS. Expression by lymphocytes was included to help indicate whether chemokine expression by secondary lymphoid organs could be attributed to expression by lymphocytes, the dominant cell type in these organs. It was estimated by examining ImmGen data on B cells, CD4+ T cells, and CD8+ T cells. It should be noted that the function of a chemokine in a tissue will depend of where it is expressed: for example, expression by blood vessel endothelial cells may enable leukocyte recruitment from the blood, while their presence elsewhere might help direct leukocytes to specific microanatomical niches, or encourage departure via lymphatic vessels.

References

    1. Miller MC & Mayo KH (2017) Chemokines from a structural perspective. Int J Mol Sci 18, 2088.
    1. Nomiyama H, Osada N & Yoshie O (2013) Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Genes Cells 18, 1–16.
    1. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ et al (2005) The influence of CCL3L1 gene‐containing segmental duplications on HIV‐1/AIDS susceptibility. Science 307, 1434–1440.
    1. Townson JR, Barcellos LF & Nibbs RJB (2002) Gene copy number regulates the production of the human chemokine CCL3‐L1. Eur J Immunol 32, 3016–3026.
    1. Nakano H & Gunn MD (2001) Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain‐specific haplotypes and the deletion of secondary lymphoid‐organ chemokine and EBI‐1 ligand chemokine genes in the plt mutation. J Immunol 166, 361–369.
    1. Guergnon J & Combadière C (2012) Role of chemokines polymorphisms in diseases. Immunol Lett 145, 15–22.
    1. Arenzana‐Seisdedos F & Parmentier M (2006) Genetics of resistance to HIV infection: role of co‐receptors and co‐receptor ligands. Semin Immunol 18, 387–403.
    1. Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ & Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52, 145–176.
    1. Zlotnik A & Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127.
    1. Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA, Charo IF & Luster AD (2011) Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL‐5(+) T(H)2 cells. Nat Immunol 12, 167–177.
    1. Nibbs RJ, Yang J, Landau NR, Mao JH & Graham GJ (1999) LD78beta, a non‐allelic variant of human MIP‐1alpha (LD78alpha), has enhanced receptor interactions and potent HIV suppressive activity. J Biol Chem 274, 17478–17483.
    1. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A & Schall TJ (1997) A new class of membrane‐bound chemokine with a CX3C motif. Nature 385, 640–644.
    1. Matloubian M, David A, Engel S, Ryan JE & Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV‐coreceptor Bonzo. Nat Immunol 1, 298–304.
    1. Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ & Raines EW (2001) Tumor necrosis factor‐alpha‐converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276, 37993–38001.
    1. Tsou CL, Haskell CA & Charo IF (2001) Tumor necrosis factor‐alpha‐converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276, 44622–44626.
    1. Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V et al (2003) The disintegrin‐like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1‐mediated cell‐cell adhesion. Blood 102, 1186–1195.
    1. Gough PJ, Garton KJ, Wille PT, Rychlewski M, Dempsey PJ & Raines EW (2004) A disintegrin and metalloproteinase 10‐mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16. J Immunol 172, 3678–3685.
    1. Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout TA, Broadway N, Hartmann D, Sedlacek R, Dietrich S, Muetze B et al (2004) The transmembrane CXC‐chemokine ligand 16 is induced by IFN‐gamma and TNF‐alpha and shed by the activity of the disintegrin‐like metalloproteinase ADAM10. J Immunol 172, 6362–6372.
    1. Berahovich RD, Miao Z, Wang Y, Premack B, Howard MC & Schall TJ (2005) Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol 174, 7341–7351.
    1. Miao Z, Premack BA, Wei Z, Wang Y, Gerard C, Showell H, Howard M, Schall TJ & Berahovich R (2007) Proinflammatory proteases liberate a discrete high‐affinity functional FPRL1 (CCR12) ligand from CCL23. J Immunol 178, 7395–7404.
    1. Yu L, Cecil J, Peng S‐B, Schrementi J, Kovacevic S, Paul D, Su EW & Wang J (2006) Identification and expression of novel isoforms of human stromal cell‐derived factor 1. Gene 374, 174–179.
    1. Janssens R, Struyf S & Proost P (2017) The unique structural and functional features of CXCL12. Cell Mol Immunol 14, 1–13.
    1. Connell BJ, Sadir R, Baleux F, Laguri C, Kleman J‐P, Luo L, Arenzana‐Seisdedos F & Lortat‐Jacob H (2016) Heparan sulfate differentially controls CXCL12α‐ and CXCL12γ‐mediated cell migration through differential presentation to their receptor CXCR4. Sci Signal 9, ra107.
    1. Monneau Y, Arenzana‐Seisdedos F & Lortat‐Jacob H (2016) The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 99, 935–953.
    1. Salanga CL & Handel TM (2011) Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res 317, 590–601.
    1. Sarris M, Masson J‐B, Maurin D, Van der Aa LM, Boudinot P, Lortat‐Jacob H & Herbomel P (2012) Inflammatory chemokines direct and restrict leukocyte migration within live tissues as glycan‐bound gradients. Curr Biol 22, 2375–2382.
    1. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T & Sixt M (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332.
    1. Barinov A, Luo L, Gasse P, Meas‐Yedid V, Donnadieu E, Arenzana‐Seisdedos F & Vieira P (2017) Essential role of immobilized chemokine CXCL12 in the regulation of the humoral immune response. Proc Natl Acad Sci USA 114, 2319–2324.
    1. Nourshargh S & Alon R (2014) Leukocyte migration into inflamed tissues. Immunity 41, 694–707.
    1. Handel TM, Johnson Z, Crown SE, Lau EK & Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans–as exemplified by chemokines. Annu Rev Biochem 74, 385–410.
    1. Bao X, Moseman EA, Saito H, Petryanik B, Thiriot A, Hatakeyama S, Ito Y, Kawashima H, Yamaguchi Y, Lowe JB et al (2010) Endothelial heparan sulfate controls chemokine presentation in recruitment of lymphocytes and dendritic cells to lymph nodes. Immunity 33, 817–829.
    1. Dyer DP, Thomson JM, Hermant A, Jowitt TA, Handel TM, Proudfoot AEI, Day AJ & Milner CM (2014) TSG‐6 inhibits neutrophil migration via direct interaction with the chemokine CXCL8. J Immunol 192, 2177–2185.
    1. Dyer DP, Salanga CL, Johns SC, Valdambrini E, Fuster MM, Milner CM, Day AJ & Handel TM (2016) The anti‐inflammatory protein TSG‐6 regulates chemokine function by inhibiting chemokine/glycosaminoglycan interactions. J Biol Chem 291, 12627–12640.
    1. Adage T, Piccinini A‐M, Falsone A, Trinker M, Robinson J, Gesslbauer B & Kungl AJ (2012) Structure‐based design of decoy chemokines as a way to explore the pharmacological potential of glycosaminoglycans. Br J Pharmacol 167, 1195–1205.
    1. Lohmann N, Schirmer L, Atallah P, Wandel E, Ferrer RA, Werner C, Simon JC, Franz S & Freudenberg U (2017) Glycosaminoglycan‐based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci Transl Med 9, eaai9044.
    1. Dyer DP, Salanga CL, Volkman BF, Kawamura T & Handel TM (2016) The dependence of chemokine‐glycosaminoglycan interactions on chemokine oligomerization. Glycobiology 26, 312–326.
    1. Liang WG, Triandafillou CG, Huang T‐Y, Zulueta MML, Banerjee S, Dinner AR, Hung S‐C & Tang W‐J (2016) Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci USA 113, 5000–5005.
    1. von Hundelshausen P, Koenen RR, Sack M, Mause SF, Adriaens W, Proudfoot AEI, Hackeng TM & Weber C (2005) Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105, 924–930.
    1. Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, Sarabi A, Kramp BK, Piccinini AM, Paludan SR, Kowalska MA et al (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15, 97–103.
    1. vonHundelshausen P , Agten SM, Eckardt V, Blanchet X, Schmitt MM, Ippel H, Neideck C, Bidzhekov K, Leberzammer J, Wichapong K et al (2017) Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci Transl Med 9, eaah6650.
    1. Proudfoot AEI, Handel TM, Johnson Z, Lau EK, LiWang P, Clark‐Lewis I, Borlat F, Wells TNC & Kosco‐Vilbois MH (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 100, 1885–1890.
    1. Loos T, Mortier A, Gouwy M, Ronsse I, Put W, Lenaerts J‐P, Van Damme J & Proost P (2008) Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 112, 2648–2656.
    1. Struyf S, Noppen S, Loos T, Mortier A, Gouwy M, Verbeke H, Huskens D, Luangsay S, Parmentier M, Geboes K et al (2009) Citrullination of CXCL12 differentially reduces CXCR4 and CXCR7 binding with loss of inflammatory and anti‐HIV‐1 activity via CXCR4. J Immunol 182, 666–674.
    1. Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S, Dillen C, Ronsse I, Conings R, Struyf S et al (2008) Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 205, 2085–2097.
    1. Barker CE, Thompson S, O'Boyle G, Lortat‐Jacob H, Sheerin NS, Ali S & Kirby JA (2017) CCL2 nitration is a negative regulator of chemokine‐mediated inflammation. Sci Rep 7, 44384.
    1. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen‐specific T cells. J Exp Med 208, 1949–1962.
    1. Janssens R, Mortier A, Boff D, Vanheule V, Gouwy M, Franck C, Larsen O, Rosenkilde MM, Van Damme J, Amaral FA et al (2016) Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra‐articular lymphocyte recruitment in vivo. Oncotarget 7, 62439–62459.
    1. Metzemaekers M, Van Damme J, Mortier A & Proost P (2016) Regulation of chemokine activity – a focus on the role of dipeptidyl peptidase IV/CD26. Front Immunol 7, 483.
    1. Proost P, Struyf S, Van Damme J, Fiten P, Ugarte‐Berzal E & Opdenakker G (2017) Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 85, 45–57.
    1. Van Lint P & Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82, 1375–1381.
    1. Schumann K, Lämmermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Förster R, Lutz MB & Sorokin L (2010) Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713.
    1. Starr AE, Dufour A, Maier J & Overall CM (2011) Biochemical analysis of matrix metalloproteinase activation of chemokines CCL15 and CCL23 and increased glycosaminoglycan binding of CCL16. J Biol Chem 287, 5848–5860.
    1. Li Q, Park PW, Wilson CL & Parks WC (2002) Matrilysin shedding of syndecan‐1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635–646.
    1. Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA & Albert ML (2015) Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol 16, 850–858.
    1. Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J & Choe H (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV‐1 entry. Cell 96, 667–676.
    1. Tan JHY, Ludeman JP, Wedderburn J, Canals M, Hall P, Butler SJ, Taleski D, Christopoulos A, Hickey MJ, Payne RJ et al (2013) Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein‐1 (MCP‐1). J Biol Chem 288, 10024–10034.
    1. Millard CJ, Ludeman JP, Canals M, Bridgford JL, Hinds MG, Clayton DJ, Christopoulos A, Payne RJ & Stone MJ (2014) Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N‐terminal region of CCR3 bound to CCL11/eotaxin‐1. Structure 22, 1571–1581.
    1. Bannert N, Craig S, Farzan M, Sogah D, Santo NV, Choe H & Sodroski J (2001) Sialylated O‐glycans and sulfated tyrosines in the NH2‐terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J Exp Med 194, 1661–1673.
    1. Gutiérrez J, Kremer L, Zaballos A, Goya I, Martínez‐A C & Márquez G (2004) Analysis of post‐translational CCR8 modifications and their influence on receptor activity. J Biol Chem 279, 14726–14733.
    1. Colvin RA, Campanella GSV, Manice LA & Luster AD (2006) CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand‐induced chemotaxis. Mol Cell Biol 26, 5838–5849.
    1. Farzan M, Babcock GJ, Vasilieva N, Wright PL, Kiprilov E, Mirzabekov T & Choe H (2002) The role of post‐translational modifications of the CXCR4 amino terminus in stromal‐derived factor 1 alpha association and HIV‐1 entry. J Biol Chem 277, 29484–29489.
    1. Fong AM, Alam SM, Imai T, Haribabu B & Patel DD (2002) CX3CR1 tyrosine sulfation enhances fractalkine‐induced cell adhesion. J Biol Chem 277, 19418–19423.
    1. Kiermaier E, Moussion C, Veldkamp CT, Gerardy‐Schahn R, de Vries I, Williams LG, Chaffee GR, Phillips AJ, Freiberger F, Imre R et al (2016) Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 351, 186–190.
    1. Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier P‐A, Chevigné A, Szpakowska M & Volkman BF (2016) New paradigms in chemokine receptor signal transduction: moving beyond the two‐site model. Biochem Pharmacol 114, 53–68.
    1. Kufareva I, Salanga CL & Handel TM (2015) Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93, 372–383.
    1. Bachelerie F, Ben‐Baruch A, Burkhardt AM, Combadière C, Farber JM, Graham GJ, Horuk R, Sparre‐Ulrich AH, Locati M, Luster AD et al (2014) International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66, 1–79.
    1. Kehrl JH (2006) Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol Res 34, 211–227.
    1. Maravillas‐Montero JL, Burkhardt AM, Hevezi PA, Carnevale CD, Smit MJ & Zlotnik A (2015) Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17. J Immunol 194, 29–33.
    1. Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ & Coughlin SR (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl‐terminal tails. Proc Natl Acad Sci USA 91, 2752–2756.
    1. Wong LM, Myers SJ, Tsou CL, Gosling J, Arai H & Charo IF (1997) Organization and differential expression of the human monocyte chemoattractant protein 1 receptor gene. Evidence for the role of the carboxyl‐terminal tail in receptor trafficking. J Biol Chem 272, 1038–1045.
    1. Yu CR, Peden KW, Zaitseva MB, Golding H & Farber JM (2000) CCR9A and CCR9B: two receptors for the chemokine CCL25/TECK/Ck beta‐15 that differ in their sensitivities to ligand. J Immunol 164, 1293–1305.
    1. Gupta SK & Pillarisetti K (1999) Cutting edge: CXCR4‐Lo: molecular cloning and functional expression of a novel human CXCR4 splice variant. J Immunol 163, 2368–2372.
    1. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E et al (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP‐10, Mig, and I‐TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197, 1537–1549.
    1. Ehlert JE, Addison CA, Burdick MD, Kunkel SL & Strieter RM (2004) Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunol 173, 6234–6240.
    1. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC et al (2010) Structures of the CXCR4 chemokine GPCR with small‐molecule and cyclic peptide antagonists. Science 330, 1066–1071.
    1. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J et al (2013) Structure of the CCR5 chemokine receptor‐HIV entry inhibitor maraviroc complex. Science 341, 1387–1390.
    1. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V et al (2015) Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347, 1117–1122.
    1. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL et al (2015) Structural biology. Structural basis for chemokine recognition and activation of a viral G protein‐coupled receptor. Science 347, 1113–1117.
    1. Zheng Y, Qin L, Zacarías NVO, deVries H , Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P et al (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461.
    1. Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, Kufareva I & Handel TM (2017) Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity 46 (1005–1017), e5.
    1. Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS et al (2016) Intracellular allosteric antagonism of the CCR9 receptor. Nature 540, 462–465.
    1. Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St‐Onge G, DiCosmo‐Ponticello CJ, Koplinski CA, Roy I et al (2017) Structural basis for chemokine recognition by a G protein‐coupled receptor and implications for receptor activation. Sci Signal 10, eaah5756.
    1. Gustavsson M, Wang L, van Gils N, Stephens BS, Zhang P, Schall TJ, Yang S, Abagyan R, Chance MR, Kufareva I et al (2017) Structural basis of ligand interaction with atypical chemokine receptor 3. Nat Commun 8, 14135.
    1. Kufareva I, Gustavsson M, Zheng Y, Stephens BS & Handel TM (2017) What do structures tell us about chemokine receptor function and antagonism? Annu Rev Biophys 46, 175–198.
    1. Corbisier J, Galès C, Huszagh A, Parmentier M & Springael J‐Y (2015) Biased signaling at chemokine receptors. J Biol Chem 290, 9542–9554.
    1. Steen A, Larsen O, Thiele S & Rosenkilde MM (2014) Biased and g protein‐independent signaling of chemokine receptors. Front Immunol 5, 277.
    1. Hauser MA, Schaeuble K, Kindinger I, Impellizzieri D, Krueger WA, Hauck CR, Boyman O & Legler DF (2016) Inflammation‐induced CCR7 oligomers form scaffolds to integrate distinct signaling pathways for efficient cell migration. Immunity 44, 59–72.
    1. Zweemer AJM, Toraskar J, Heitman LH & IJzerman AP (2014) Bias in chemokine receptor signalling. Trends Immunol 35, 243–252.
    1. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schröder JM, Wang JM, Howard OM et al (1999) Beta‐defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528.
    1. Tirone M, Tran NL, Ceriotti C, Gorzanelli A, Canepari M, Bottinelli R, Raucci A, Di Maggio S, Santiago C, Mellado M et al (2018) High mobility group box 1 orchestrates tissue regeneration via CXCR4. J Exp Med 215, 303–318.
    1. Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, Vénéreau E, Apuzzo T, De Marchis F, Pedotti M, Bachi A et al (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209, 551–563.
    1. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13, 587–596.
    1. Chakera A, Seeber RM, John AE, Eidne KA & Greaves DR (2008) The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero‐oligomerization. Mol Pharmacol 73, 1362–1370.
    1. Agrawal L, Lu X, Qingwen J, VanHorn‐Ali Z, Nicolescu IV, McDermott DH, Murphy PM & Alkhatib G (2004) Role for CCR5Delta32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J Virol 78, 2277–2287.
    1. Mellado M, Rodriguez‐Frade JM, Vila‐Coro AJ, Fernández S, Martín de Ana A, Jones DR, Torán JL & Martinez‐A C (2001) Chemokine receptor homo‐ or heterodimerization activates distinct signaling pathways. EMBO J 20, 2497–2507.
    1. Percherancier Y, Berchiche YA, Slight I, Volkmer‐Engert R, Tamamura H, Fujii N, Bouvier M & Heveker N (2005) Bioluminescence resonance energy transfer reveals ligand‐induced conformational changes in CXCR4 homo‐ and heterodimers. J Biol Chem 280, 9895–9903.
    1. Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, Parmentier M & Springael J‐Y (2009) Hetero‐oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J Biol Chem 284, 31270–31279.
    1. Wilson S, Wilkinson G & Milligan G (2005) The CXCR1 and CXCR2 receptors form constitutive homo‐ and heterodimers selectively and with equal apparent affinities. J Biol Chem 280, 28663–28674.
    1. Sierro F, Biben C, Martínez‐Muñoz L, Mellado M, Ransohoff RM, Li M, Woehl B, Leung H, Groom J, Batten M et al (2007) Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF‐1 receptor, CXCR7. Proc Natl Acad Sci USA 104, 14759–14764.
    1. Levoye A, Balabanian K, Baleux F, Bachelerie F & Lagane B (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12‐mediated G protein signaling. Blood 113, 6085–6093.
    1. Watts AO, van Lipzig MMH, Jaeger WC, Seeber RM, van Zwam M, Vinet J, van der Lee MMC, Siderius M, Zaman GJR, Boddeke HWGM et al (2013) Identification and profiling of CXCR3‐CXCR4 chemokine receptor heteromer complexes. Br J Pharmacol 168, 1662–1674.
    1. Schwartz V, Lue H, Kraemer S, Korbiel J, Krohn R, Ohl K, Bucala R, Weber C & Bernhagen J (2009) A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Lett 583, 2749–2757.
    1. Chen C, Li J, Bot G, Szabo I, Rogers TJ & Liu‐Chen L‐Y (2004) Heterodimerization and cross‐desensitization between the mu‐opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483, 175–186.
    1. Parenty G, Appelbe S & Milligan G (2008) CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2‐DOP receptor heterodimer. Biochem J 412, 245–256.
    1. Coke CJ, Scarlett KA, Chetram MA, Jones KJ, Sandifer BJ, Davis AS, Marcus AI & Hinton CV (2016) Simultaneous activation of induced heterodimerization between CXCR4 chemokine receptor and cannabinoid receptor 2 (CB2) reveals a mechanism for regulation of tumor progression. J Biol Chem 291, 9991–10005.
    1. Pello OM, Martínez‐Muñoz L, Parrillas V, Serrano A, Rodríguez‐Frade JM, Toro MJ, Lucas P, Monterrubio M, Martínez‐A C & Mellado M (2008) Ligand stabilization of CXCR4/delta‐opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol 38, 537–549.
    1. Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE & Hedin KE (2006) CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25, 213–224.
    1. Kremer KN, Clift IC, Miamen AG, Bamidele AO, Qian N‐X, Humphreys TD & Hedin KE (2011) Stromal cell‐derived factor‐1 signaling via the CXCR4‐TCR heterodimer requires phospholipase C‐β3 and phospholipase C‐γ1 for distinct cellular responses. J Immunol 187, 1440–1447.
    1. Suzuki S, Chuang LF, Yau P, Doi RH & Chuang RY (2002) Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp Cell Res 280, 192–200.
    1. Herrera C, Morimoto C, Blanco J, Mallol J, Arenzana F, Lluis C & Franco R (2001) Comodulation of CXCR4 and CD26 in human lymphocytes. J Biol Chem 276, 19532–19539.
    1. Xiao X, Wu L, Stantchev TS, Feng YR, Ugolini S, Chen H, Shen Z, Riley JL, Broder CC, Sattentau QJ et al (1999) Constitutive cell surface association between CD4 and CCR5. Proc Natl Acad Sci USA 96, 7496–7501.
    1. Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V & Majetschak M (2015) Heteromerization of chemokine (C‐X‐C motif) receptor 4 with α1A/B‐adrenergic receptors controls α1‐adrenergic receptor function. Proc Natl Acad Sci USA 112, E1659–E1668.
    1. Barroso R, Martínez‐Muñoz L, Barrondo S, Vega B, Holgado BL, Lucas P, Baíllo A, Sallés J, Rodríguez‐Frade JM & Mellado M (2012) EBI2 regulates CXCL13‐mediated responses by heterodimerization with CXCR5. FASEB J 26, 4841–4854.
    1. Martínez‐Muñoz L, Barroso R, Dyrhaug SY, Navarro G, Lucas P, Soriano SF, Vega B, Costas C, Muñoz‐Fernández MÁ, Santiago C et al (2014) CCR5/CD4/CXCR4 oligomerization prevents HIV‐1 gp120IIIB binding to the cell surface. Proc Natl Acad Sci USA 111, E1960–E1969.
    1. Moreno‐Fernandez ME, Aliberti J, Groeneweg S, Köhl J & Chougnet CA (2016) A novel role for the receptor of the complement cleavage fragment C5a, C5aR1, in CCR5‐mediated entry of HIV into macrophages. AIDS Res Hum Retroviruses 32, 399–408.
    1. LaRocca TJ, Schwarzkopf M, Altman P, Zhang S, Gupta A, Gomes I, Alvin Z, Champion HC, Haddad G, Hajjar RJ et al (2010) β2‐Adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4. J Cardiovasc Pharmacol 56, 548–559.
    1. Catalano M, Trettel F, Cipriani R, Lauro C, Sobrero F, Eusebi F & Limatola C (2008) Chemokine CXCL8 modulates GluR1 phosphorylation. J Neuroimmunol 198, 75–81.
    1. Hayasaka H, Kobayashi D, Yoshimura H, Nakayama EE, Shioda T & Miyasaka M (2015) The HIV‐1 Gp120/CXCR4 axis promotes CCR7 ligand‐dependent CD4 T cell migration: CCR7 homo‐ and CCR7/CXCR4 hetero‐oligomer formation as a possible mechanism for up‐regulation of functional CCR7. PLoS ONE 10, e0117454.
    1. Nibbs RJ, Salcedo TW, Campbell JD, Yao XT, Li Y, Nardelli B, Olsen HS, Morris TS, Proudfoot AE, Patel VP et al (2000) C‐C chemokine receptor 3 antagonism by the beta‐chemokine macrophage inflammatory protein 4, a property strongly enhanced by an amino‐terminal alanine‐methionine swap. J Immunol 164, 1488–1497.
    1. Loetscher P, Pellegrino A, Gong JH, Mattioli I, Loetscher M, Bardi G, Baggiolini M & Clark‐Lewis I (2001) The ligands of CXC chemokine receptor 3, I‐TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 276, 2986–2991.
    1. Petkovic V, Moghini C, Paoletti S, Uguccioni M & Gerber B (2004) Eotaxin‐3/CCL26 is a natural antagonist for CC chemokine receptors 1 and 5. A human chemokine with a regulatory role. J Biol Chem 279, 23357–23363.
    1. Petkovic V, Moghini C, Paoletti S, Uguccioni M & Gerber B (2004) I‐TAC/CXCL11 is a natural antagonist for CCR5. J Leukoc Biol 76, 701–708.
    1. Weng Y, Siciliano SJ, Waldburger KE, Sirotina‐Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS & DeMartino JA (1998) Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem 273, 18288–18291.
    1. Ogilvie P, Paoletti S, Clark‐Lewis I & Uguccioni M (2003) Eotaxin‐3 is a natural antagonist for CCR2 and exerts a repulsive effect on human monocytes. Blood 102, 789–794.
    1. Ogilvie P, Bardi G, Clark‐Lewis I, Baggiolini M & Uguccioni M (2001) Eotaxin is a natural antagonist for CCR2 and an agonist for CCR5. Blood 97, 1920–1924.
    1. Xanthou G, Duchesnes CE, Williams TJ & Pease JE (2003) CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol 33, 2241–2250.
    1. Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L et al (2011) CCL18 from tumor‐associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19, 541–555.
    1. Islam SA, Ling MF, Leung J, Shreffler WG & Luster AD (2013) Identification of human CCR8 as a CCL18 receptor. J Exp Med 210, 1889–1898.
    1. Alcami A & Lira SA (2010) Modulation of chemokine activity by viruses. Curr Opin Immunol 22, 482–487.
    1. Déruaz M, Frauenschuh A, Alessandri AL, Dias JM, Coelho FM, Russo RC, Ferreira BR, Graham GJ, Shaw JP, Wells TNC et al (2008) Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 205, 2019–2031.
    1. Bonvin P, Power CA & Proudfoot AEI (2016) Evasins: therapeutic potential of a new family of chemokine‐binding proteins from ticks. Front Immunol 7, 208.
    1. Hayward J, Sanchez J, Perry A, Huang C, Rodriguez Valle M, Canals M, Payne RJ & Stone MJ (2017) Ticks from diverse genera encode chemokine‐inhibitory evasin proteins. J Biol Chem 292, 15670–15680.
    1. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM et al (1996) Identification of a major co‐receptor for primary isolates of HIV‐1. Nature 381, 661–666.
    1. Feng Y, Broder CC, Kennedy PE & Berger EA (1996) HIV‐1 entry cofactor: functional cDNA cloning of a seven‐transmembrane, G protein‐coupled receptor. Science 272, 872–877.
    1. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP et al (1996) HIV‐1 entry into CD4+ cells is mediated by the chemokine receptor CC‐CKR‐5. Nature 381, 667–673.
    1. Alkhatib G, Combadière C, Broder CC, Feng Y, Kennedy PE, Murphy PM & Berger EA (1996) CC CKR5: a RANTES, MIP‐1alpha, MIP‐1beta receptor as a fusion cofactor for macrophage‐tropic HIV‐1. Science 272, 1955–1958.
    1. Cocchi F, DeVico AL, Garzino‐Demo A, Cara A, Gallo RC & Lusso P (1996) The V3 domain of the HIV‐1 gp120 envelope glycoprotein is critical for chemokine‐mediated blockade of infection. Nat Med 2, 1244–1247.
    1. Speck RF, Wehrly K, Platt EJ, Atchison RE, Charo IF, Kabat D, Chesebro B & Goldsmith MA (1997) Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J Virol 71, 7136–7139.
    1. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, Cardoso AA, Desjardin E, Newman W et al (1996) CD4‐induced interaction of primary HIV‐1 gp120 glycoproteins with the chemokine receptor CCR‐5. Nature 384, 179–183.
    1. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA & Landau NR (1996) Homozygous defect in HIV‐1 coreceptor accounts for resistance of some multiply‐exposed individuals to HIV‐1 infection. Cell 86, 367–377.
    1. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C et al (1996) Resistance to HIV‐1 infection in caucasian individuals bearing mutant alleles of the CCR‐5 chemokine receptor gene. Nature 382, 722–725.
    1. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E et al (1996) Genetic restriction of HIV‐1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862.
    1. Woollard SM & Kanmogne GD (2015) Maraviroc: a review of its use in HIV infection and beyond. Drug Des Devel Ther 9, 5447–5468.
    1. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O et al (2009) Long‐term control of HIV by CCR5 Delta32/Delta32 stem‐cell transplantation. N Engl J Med 360, 692–698.
    1. Glass WG, McDermott DH, Lim JK, Lekhong S, Yu SF, Frank WA, Pape J, Cheshier RC & Murphy PM (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203, 35–40.
    1. Glass WG, Lim JK, Cholera R, Pletnev AG, Gao J‐L & Murphy PM (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202, 1087–1098.
    1. Aliberti J, Valenzuela JG, Carruthers VB, Hieny S, Andersen J, Charest H, Reis e Sousa C, Fairlamb A, Ribeiro JM & Sher A (2003) Molecular mimicry of a CCR5 binding‐domain in the microbial activation of dendritic cells. Nat Immunol 4, 485–490.
    1. Zhivaki D, Lemoine S, Lim A, Morva A, Vidalain P‐O, Schandene L, Casartelli N, Rameix‐Welti M‐A, Hervé P‐L, Deriaud E et al (2017) Respiratory syncytial virus infects regulatory B cells in human neonates via chemokine receptor CX3CR1 and promotes lung disease severity. Immunity 46, 301–314.
    1. Spaan AN, Vrieling M, Wallet P, Badiou C, Reyes‐Robles T, Ohneck EA, Benito Y, de Haas CJC, Day CJ, Jennings MP et al (2014) The staphylococcal toxins γ‐haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 5, 5438.
    1. Spaan AN, Reyes‐Robles T, Badiou C, Cochet S, Boguslawski KM, Yoong P, Day CJ, de Haas CJC, van Kessel KPM, Vandenesch F et al (2015) Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host Microbe 18, 363–370.
    1. Alonzo F, Kozhaya L, Rawlings SA, Reyes‐Robles T, DuMont AL, Myszka DG, Landau NR, Unutmaz D & Torres VJ (2013) CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493, 51–55.
    1. Reyes‐Robles T, Alonzo F, Kozhaya L, Lacy DB, Unutmaz D & Torres VJ (2013) Staphylococcus aureus Leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14, 453–459.
    1. Nibbs RJB & Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13, 815–829.
    1. Nibbs RJB & Graham GJ (2013) Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13, 815–829.
    1. Choe H, Moore MJ, Owens CM, Wright PL, Vasilieva N, Li W, Singh AP, Shakri R, Chitnis CE & Farzan M (2005) Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol Microbiol 55, 1413–1422.
    1. Hewit KD, Fraser A, Nibbs RJB & Graham GJ (2014) The N‐terminal region of the atypical chemokine receptor ACKR2 is a key determinant of ligand binding. J Biol Chem 289, 12330–12342.
    1. Pruenster M, Mudde L, Bombosi P, Dimitrova S, Zsak M, Middleton J, Richmond A, Graham GJ, Segerer S, Nibbs RJB et al (2009) The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 10, 101–108.
    1. Lee JS, Frevert CW, Wurfel MM, Peiper SC, Wong VA, Ballman KK, Ruzinski JT, Rhim JS, Martin TR & Goodman RB (2003) Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo. J Immunol 170, 5244–5251.
    1. Fukuma N, Akimitsu N, Hamamoto H, Kusuhara H, Sugiyama Y & Sekimizu K (2003) A role of the Duffy antigen for the maintenance of plasma chemokine concentrations. Biochem Biophys Res Commun 303, 137–139.
    1. Mayr FB, Spiel AO, Leitner JM, Firbas C, Schnee J, Hilbert J, Derendorf H & Jilma B (2009) Influence of the Duffy antigen on pharmacokinetics and pharmacodynamics of recombinant monocyte chemoattractant protein (MCP‐1, CCL‐2) in vivo. Int J Immunopathol Pharmacol 22, 615–625.
    1. Jilma‐Stohlawetz P, Homoncik M, Drucker C, Marsik C, Rot A, Mayr WR, Seibold B & Jilma B (2001) Fy phenotype and gender determine plasma levels of monocyte chemotactic protein. Transfusion 41, 378–381.
    1. Schnabel RB, Baumert J, Barbalic M, Dupuis J, Ellinor PT, Durda P, Dehghan A, Bis JC, Illig T, Morrison AC et al (2010) Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein‐1 and other inflammatory mediators. Blood 115, 5289–5299.
    1. Mei J, Liu Y, Dai N, Favara M, Greene T, Jeyaseelan S, Poncz M, Lee JS & Worthen GS (2010) CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 33, 106–117.
    1. Duchene J, Novitzky‐Basso I, Thiriot A, Casanova‐Acebes M, Bianchini M, Etheridge SL, Hub E, Nitz K, Artinger K, Eller K et al (2017) Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nat Immunol 18, 753–761.
    1. Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, Patterson N, Mullikin J, Hsueh W‐C, Cheng C‐Y, Coresh J et al (2009) Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet 5, e1000360.
    1. Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ & Miller LH (1993) A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182–1184.
    1. Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler‐Wildman KA & Tolia NH (2014) Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS Pathog 10, e1003869.
    1. Wertheimer SP & Barnwell JW (1989) Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor‐like protein. Exp Parasitol 69, 340–350.
    1. Zimmerman PA, Ferreira MU, Howes RE & Mercereau‐Puijalon O (2013) Red blood cell polymorphism and susceptibility to Plasmodium vivax . Adv Parasitol 81, 27–76.
    1. Tournamille C, Colin Y, Cartron JP & Le Van Kim C (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy‐negative individuals. Nat Genet 10, 224–228.
    1. Crosslin DR, McDavid A, Weston N, Nelson SC, Zheng X, Hart E, de Andrade M, Kullo IJ, McCarty CA, Doheny KF et al & Network TEMRAGE (2012) Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network. Hum Genet 131, 639–652.
    1. Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, Huntsman S, Garcia M, Hu D, Li R, Beamer BA et al (2008) Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am J Hum Genet 82, 81–87.
    1. Kulkarni H, Marconi VC, He W, Landrum ML, Okulicz JF, Delmar J, Kazandjian D, Castiblanco J, Ahuja SS, Wright EJ et al (2009) The Duffy‐null state is associated with a survival advantage in leukopenic HIV‐infected persons of African ancestry. Blood 114, 2783–2792.
    1. He W, Neil S, Kulkarni H, Wright E, Agan BK, Marconi VC, Dolan MJ, Weiss RA & Ahuja SK (2008) Duffy antigen receptor for chemokines mediates trans‐infection of HIV‐1 from red blood cells to target cells and affects HIV‐AIDS susceptibility. Cell Host Microbe 4, 52–62.
    1. Horne KC, Li X, Jacobson LP, Palella F, Jamieson BD, Margolick JB, Martinson J, Turkozu V, Visvanathan K & Woolley IJ (2009) Duffy antigen polymorphisms do not alter progression of HIV in African Americans in the MACS cohort. Cell Host Microbe 5, 415–417.
    1. Julg B, Reddy S, van der Stok M, Kulkarni S, Qi Y, Bass S, Gold B, Nalls MA, Nelson GW, Walker BD et al (2009) Lack of Duffy antigen receptor for chemokines: no influence on HIV disease progression in an African treatment‐naive population. Cell Host Microbe 5, 413–415.
    1. Walley NM, Julg B, Dickson SP, Fellay J, Ge D, Walker BD, Carrington M, Cohen MS, de Bakker PIW, Goldstein DB et al (2009) The Duffy antigen receptor for chemokines null promoter variant does not influence HIV‐1 acquisition or disease progression. Cell Host Microbe 5, 408–410.
    1. Winkler CA, An P, Johnson R, Nelson GW & Kirk G (2009) Expression of Duffy antigen receptor for chemokines (DARC) has no effect on HIV‐1 acquisition or progression to AIDS in African Americans. Cell Host Microbe 5, 411–413.
    1. Weber M, Blair E, Simpson CV, O'Hara M, Blackburn PE, Rot A, Graham GJ & Nibbs RJB (2004) The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol Biol Cell 15, 2492–2508.
    1. Fra AM, Locati M, Otero K, Sironi M, Signorelli P, Massardi ML, Gobbi M, Vecchi A, Sozzani S & Mantovani A (2003) Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J Immunol 170, 2279–2282.
    1. Nibbs RJ, Kriehuber E, Ponath PD, Parent D, Qin S, Campbell JD, Henderson A, Kerjaschki D, Maurer D, Graham GJ et al (2001) The beta‐chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol 158, 867–877.
    1. Madigan J, Freeman DJ, Menzies F, Forrow S, Nelson SM, Young A, Sharkey A, Moffett A, Graham GJ, Greer IA et al (2010) Chemokine scavenger D6 is expressed by trophoblasts and AIDS the survival of mouse embryos transferred into allogeneic recipients. J Immunol 184, 3202–3212.
    1. Martinez de la Torre Y, Buracchi C, Borroni EM, Dupor J, Bonecchi R, Nebuloni M, Pasqualini F, Doni A, Lauri E, Agostinis C et al (2007) Protection against inflammation‐ and autoantibody‐caused fetal loss by the chemokine decoy receptor D6. Proc Natl Acad Sci USA 104, 2319–2324.
    1. Teoh PJ, Menzies FM, Hansell CAH, Clarke M, Waddell C, Burton GJ, Nelson SM & Nibbs RJB (2014) Atypical chemokine receptor ACKR2 mediates chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure, and neonatal mortality in mice. J Immunol 193, 5218–5228.
    1. Lee KM, Danuser R, Stein JV, Graham D, Nibbs RJ & Graham GJ (2014) The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density. EMBO J 33, 2564–2580.
    1. Lee KM, McKimmie CS, Gilchrist DS, Pallas KJ, Nibbs RJ, Garside P, McDonald V, Jenkins C, Ransohoff R, Liu L et al (2011) D6 facilitates cellular migration, and fluid flow, to lymph nodes by suppressing lymphatic congestion. Blood 118, 6220–6229.
    1. Jamieson T, Cook DN, Nibbs RJB, Rot A, Nixon C, McLean P, Alcami A, Lira SA, Wiekowski M & Graham GJ (2005) The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol 6, 403–411.
    1. Nibbs RJB, Gilchrist DS, King V, Ferra A, Forrow S, Hunter KD & Graham GJ (2007) The atypical chemokine receptor D6 suppresses the development of chemically induced skin tumors. J Clin Invest 117, 1884–1892.
    1. Hansell CAH, Schiering C, Kinstrie R, Ford L, Bordon Y, McInnes IB, Goodyear CS & Nibbs RJB (2011) Universal expression and dual function of the atypical chemokine receptor D6 on innate‐like B cells in mice. Blood 117, 5413–5424.
    1. Wilson GJ, Hewit KD, Pallas KJ, Cairney CJ, Lee KM, Hansell CA, Stein T & Graham GJ (2017) Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development 144, 74–82.
    1. Dambly‐Chaudière C, Cubedo N & Ghysen A (2007) Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7, 23.
    1. Boldajipour B, Mahabaleshwar H, Kardash E, Reichman‐Fried M, Blaser H, Minina S, Wilson D, Xu Q & Raz E (2008) Control of chemokine‐guided cell migration by ligand sequestration. Cell 132, 463–473.
    1. Gerrits H, van Ingen Schenau DS, Bakker NEC, van Disseldorp AJM, Strik A, Hermens LS, Koenen TB, Krajnc‐Franken MAM & Gossen JA (2008) Early postnatal lethality and cardiovascular defects in CXCR7‐deficient mice. Genesis 46, 235–245.
    1. Yu S, Crawford D, Tsuchihashi T, Behrens TW & Srivastava D (2011) The chemokine receptor CXCR7 functions to regulate cardiac valve remodeling. Dev Dyn 240, 384–393.
    1. Sánchez‐Alcañiz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, López‐Bendito G, Stumm R & Marín O (2011) Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 69, 77–90.
    1. Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, Pleasure SJ, Behrens T & Rubenstein JLR (2011) CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 69, 61–76.
    1. Haege S, Einer C, Thiele S, Mueller W, Nietzsche S, Lupp A, Mackay F, Schulz S & Stumm R (2012) CXC chemokine receptor 7 (CXCR7) regulates CXCR4 protein expression and capillary tuft development in mouse kidney. PLoS ONE 7, e42814.
    1. Cubedo N, Cerdan E, Sapède D & Rossel M (2009) CXCR4 and CXCR7 cooperate during tangential migration of facial motoneurons. Mol Cell Neurosci 40, 474–484.
    1. Zhu B, Xu D, Deng X, Chen Q, Huang Y, Peng H, Li Y, Jia B, Thoreson WB, Ding W et al (2012) CXCL12 enhances human neural progenitor cell survival through a CXCR7‐ and CXCR4‐ mediated endocytotic signaling pathway. Stem Cells 30, 2571–2583.
    1. Valentin G, Haas P & Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 17, 1026–1031.
    1. Ulvmar MH, Werth K, Braun A, Kelay P, Hub E, Eller K, Chan L, Lucas B, Novitzky‐Basso I, Nakamura K et al (2014) The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat Immunol 15, 623–630.
    1. Bryce SA, Wilson RAM, Tiplady EM, Asquith DL, Bromley SK, Luster AD, Graham GJ & Nibbs RJB (2016) ACKR4 on stromal cells scavenges CCL19 To enable CCR7‐dependent trafficking of APCs from inflamed skin to lymph nodes. J Immunol 196, 3341–3353.
    1. Comerford I, Milasta S, Morrow V, Milligan G & Nibbs R (2006) The chemokine receptor CCX‐CKR mediates effective scavenging of CCL19 in vitro. Eur J Immunol 36, 1904–1916.
    1. Comerford I, Nibbs RJ, Litchfield W, Bunting M, Harata‐Lee Y, Haylock‐Jacobs S, Forrow S, Körner H & McColl SR (2010) The atypical chemokine receptor CCX‐CKR scavenges homeostatic chemokines in circulation and tissues and suppresses Th17 responses. Blood 116, 4130–4140.
    1. Bunting MD, Comerford I, Seach N, Hammett MV, Asquith DL, Körner H, Boyd RL, Nibbs RJB & McColl SR (2013) CCX‐CKR deficiency alters thymic stroma impairing thymocyte development and promoting autoimmunity. Blood 121, 118–128.
    1. Lucas B, White AJ, Ulvmar MH, Nibbs RJB, Sitnik KM, Agace WW, Jenkinson WE, Anderson G & Rot A (2015) CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol 45, 574–583.
    1. Cardona AE, Sasse ME, Liu L, Cardona SM, Mizutani M, Savarin C, Hu T & Ransohoff RM (2008) Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood 112, 256–263.
    1. López‐Cotarelo P, Gómez‐Moreira C, Criado‐García O, Sánchez L & Rodríguez‐Fernández JL (2017) Beyond chemoattraction: multifunctionality of chemokine receptors in leukocytes. Trends Immunol 38, 927–941.
    1. Wolf M & Moser B (2012) Antimicrobial activities of chemokines: not just a side‐effect? Front Immunol 3, 213.
    1. Kulkarni N, Pathak M & Lal G (2017) Role of chemokine receptors and intestinal epithelial cells in the mucosal inflammation and tolerance. J Leukoc Biol 101, 377–394.
    1. Beck LA, Tancowny B, Brummet ME, Asaki SY, Curry SL, Penno MB, Foster M, Bahl A & Stellato C (2006) Functional analysis of the chemokine receptor CCR3 on airway epithelial cells. J Immunol 177, 3344–3354.
    1. Ghosh MC, Makena PS, Gorantla VK, Sinclair SE & Waters CM (2012) CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and Matrix Metalloproteinase‐2 (MMP‐2). Am J Physiol Lung Cell Mol Physiol 302, L846–856.
    1. Cartier L, Hartley O, Dubois‐Dauphin M & Krause K‐H (2005) Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 48, 16–42.
    1. Dimberg A (2010) Chemokines in angiogenesis. Curr Top Microbiol Immunol 341, 59–80.
    1. Mehrad B, Keane MP & Strieter RM (2007) Chemokines as mediators of angiogenesis. Thromb Haemost 97, 755–762.
    1. Chamberlain G, Wright K, Rot A, Ashton B & Middleton J (2008) Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human. PLoS ONE 3, e2934.
    1. Zlotnik A, Burkhardt AM & Homey B (2011) Homeostatic chemokine receptors and organ‐specific metastasis. Nat Rev Immunol 11, 597–606.
    1. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56.
    1. Bussmann J & Raz E (2015) Chemokine‐guided cell migration and motility in zebrafish development. EMBO J 34, 1309–1318.
    1. Donà E, Barry JD, Valentin G, Quirin C, Khmelinskii A, Kunze A, Durdu S, Newton LR, Fernandez‐Minan A, Huber W et al (2013) Directional tissue migration through a self‐generated chemokine gradient. Nature 503, 285–289.
    1. Malet‐Engra G, Yu W, Oldani A, Rey‐Barroso J, Gov NS, Scita G & Dupré L (2015) Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr Biol 25, 242–250.
    1. Tharp WG, Yadav R, Irimia D, Upadhyaya A, Samadani A, Hurtado O, Liu S‐Y, Munisamy S, Brainard DM, Mahon MJ et al (2006) Neutrophil chemorepulsion in defined interleukin‐8 gradients in vitro and in vivo. J Leukoc Biol 79, 539–554.
    1. Poznansky MC, Olszak IT, Foxall R, Evans RH, Luster AD & Scadden DT (2000) Active movement of T cells away from a chemokine. Nat Med 6, 543–548.
    1. Poznansky MC, Olszak IT, Evans RH, Wang Z, Foxall RB, Olson DP, Weibrecht K, Luster AD & Scadden DT (2002) Thymocyte emigration is mediated by active movement away from stroma‐derived factors. J Clin Invest 109, 1101–1110.
    1. Weninger W, Biro M & Jain R (2014) Leukocyte migration in the interstitial space of non‐lymphoid organs. Nat Rev Immunol 14, 232–246.
    1. Kara EE, Bastow CR, McKenzie DR, Gregor CE, Fenix KA, Babb R, Norton TS, Zotos D, Rodda LB, Hermes JR et al (2018) Atypical chemokine receptor 4 shapes activated B cell fate. J Exp Med 215, 801–813.
    1. Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI, Ebert EC, Vierra MA, Goodman SB, Genovese MC et al (2000) Lymphocyte CC chemokine receptor 9 and epithelial thymus‐expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue‐specific chemokines as an organizing principle in regional immunity. J Exp Med 192, 761–768.
    1. Schaerli P, Willimann K, Ebert LM, Walz A & Moser B (2005) Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23, 331–342.
    1. Homey B, Alenius H, Müller A, Soto H, Bowman EP, Yuan W, McEvoy L, Lauerma AI, Assmann T, Bünemann E et al (2002) CCL27‐CCR10 interactions regulate T cell‐mediated skin inflammation. Nat Med 8, 157–165.
    1. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H & Kishimoto T (1996) Defects of B‐cell lymphopoiesis and bone‐marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF‐1. Nature 382, 635–638.
    1. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S et al (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594.
    1. Zou YR, Kottmann AH, Kuroda M, Taniuchi I & Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599.
    1. Klein KR, Karpinich NO, Espenschied ST, Willcockson HH, Dunworth WP, Hoopes SL, Kushner EJ, Bautch VL & Caron KM (2014) Decoy receptor CXCR7 modulates adrenomedullin‐mediated cardiac and lymphatic vascular development. Dev Cell 30, 528–540.
    1. Sugiyama T, Kohara H, Noda M & Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12‐CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988.
    1. Nie Y, Han Y‐C & Zou Y‐R (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205, 777–783.
    1. Lim VY, Zehentmeier S, Fistonich C & Pereira JP (2017) A chemoattractant‐guided walk through lymphopoiesis: from hematopoietic stem cells to mature B lymphocytes. Adv Immunol 134, 47–88.
    1. Bilgin YM & de Greef GE (2016) Plerixafor for stem cell mobilization: the current status. Curr Opin Hematol 23, 67–71.
    1. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, Klotman ME & Diaz GA (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34, 70–74.
    1. Liu Q, Chen H, Ojode T, Gao X, Anaya‐O'Brien S, Turner NA, Ulrick J, Decastro R, Kelly C, Cardones AR et al (2012) WHIM syndrome caused by a single amino acid substitution in the carboxy‐tail of chemokine receptor CXCR4. Blood 120, 181–189.
    1. Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, Lebbe C, Kerob D, Dupuy A, Hermine O et al (2005) WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105, 2449–2457.
    1. Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L, Imberti L, Pirovano S, Notarangelo LD, Soresina R et al (2004) Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 104, 444–452.
    1. McDermott DH, Liu Q, Velez D, Lopez L, Anaya‐O'Brien S, Ulrick J, Kwatemaa N, Starling J, Fleisher TA, Priel DAL et al (2014) A phase 1 clinical trial of long‐term, low‐dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood 123, 2308–2316.
    1. McDermott DH, Gao J‐L, Liu Q, Siwicki M, Martens C, Jacobs P, Velez D, Yim E, Bryke CR, Hsu N et al (2015) Chromothriptic cure of WHIM syndrome. Cell 160, 686–699.
    1. Förster R, Mattis AE, Kremmer E, Wolf E, Brem G & Lipp M (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047.
    1. Ansel KM, Ngo VN, Hyman PL, Luther SA, Förster R, Sedgwick JD, Browning JL, Lipp M & Cyster JG (2000) A chemokine‐driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314.
    1. Finke D, Acha‐Orbea H, Mattis A, Lipp M & Kraehenbuhl J (2002) CD4+CD3‐ cells induce Peyer's patch development: role of alpha4beta1 integrin activation by CXCR5. Immunity 17, 363–373.
    1. Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, Bernhardt G, Pabst O & Förster R (2003) Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med 197, 1199–1204.
    1. Luther SA, Ansel KM & Cyster JG (2003) Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 197, 1191–1198.
    1. de Pavert SAV, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, Kusser K, Höpken UE, Lipp M, Niederreither K et al (2009) Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol 10, 1193–1199.
    1. Ueno T, Hara K, Willis MS, Malin MA, Höpken UE, Gray DHD, Matsushima K, Lipp M, Springer TA, Boyd RL et al (2002) Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16, 205–218.
    1. Kwan J & Killeen N (2004) CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol 172, 3999–4007.
    1. Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, Arakaki R, Hayashi Y, Kitagawa T, Lipp M et al (2006) CCR7‐dependent cortex‐to‐medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 24, 165–177.
    1. Ueno T, Saito F, Gray DHD, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL & Takahama Y (2004) CCR7 signals are essential for cortex‐medulla migration of developing thymocytes. J Exp Med 200, 493–505.
    1. Misslitz A, Pabst O, Hintzen G, Ohl L, Kremmer E, Petrie HT & Förster R (2004) Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 200, 481–491.
    1. Davalos‐Misslitz ACM, Rieckenberg J, Willenzon S, Worbs T, Kremmer E, Bernhardt G & Förster R (2007) Generalized multi‐organ autoimmunity in CCR7‐deficient mice. Eur J Immunol 37, 613–622.
    1. Hu Z, Lancaster JN, Sasiponganan C & Ehrlich LIR (2015) CCR4 promotes medullary entry and thymocyte‐dendritic cell interactions required for central tolerance. J Exp Med 212, 1947–1965.
    1. Cowan JE, McCarthy NI, Parnell SM, White AJ, Bacon A, Serge A, Irla M, Lane PJL, Jenkinson EJ, Jenkinson WE et al (2014) Differential requirement for CCR4 and CCR7 during the development of innate and adaptive αβT cells in the adult thymus. J Immunol 193, 1204–1212.
    1. Wurbel MA, Malissen M, Guy‐Grand D, Meffre E, Nussenzweig MC, Richelme M, Carrier A & Malissen B (2001) Mice lacking the CCR9 CC‐chemokine receptor show a mild impairment of early T‐ and B‐cell development and a reduction in T‐cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood 98, 2626–2632.
    1. Hu Z, Li Y, Van Nieuwenhuijze A, Selden HJ, Jarrett AM, Sorace AG, Yankeelov TE, Liston A & Ehrlich LIR (2017) CCR7 modulates the generation of thymic regulatory T cells by altering the composition of the thymic dendritic cell compartment. Cell Rep 21, 168–180.
    1. Lancaster JN, Li Y & Ehrlich LIR (2018) Chemokine‐mediated choreography of thymocyte development and selection. Trends Immunol 39, 86–98.
    1. Kozai M, Kubo Y, Katakai T, Kondo H, Kiyonari H, Schaeuble K, Luther SA, Ishimaru N, Ohigashi I & Takahama Y (2017) Essential role of CCL21 in establishment of central self‐tolerance in T cells. J Exp Med 214, 1925–1935.
    1. Förster R, Davalos‐Misslitz AC & Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8, 362–371.
    1. Druzd D, Matveeva O, Ince L, Harrison U, He W, Schmal C, Herzel H, Tsang AH, Kawakami N, Leliavski A et al (2017) Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132.
    1. Nakai A, Hayano Y, Furuta F, Noda M & Suzuki K (2014) Control of lymphocyte egress from lymph nodes through β2‐adrenergic receptors. J Exp Med 211, 2583–2598.
    1. Suzuki K, Hayano Y, Nakai A, Furuta F & Noda M (2016) Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J Exp Med 213, 2567–2574.
    1. Förster R, Schubel A, Breitfeld D, Kremmer E, Renner‐Müller I, Wolf E & Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33.
    1. Okada T & Cyster JG (2007) CC chemokine receptor 7 contributes to Gi‐dependent T cell motility in the lymph node. J Immunol 178, 2973–2978.
    1. Worbs T, Mempel TR, Bölter J, von Andrian UH & Förster R (2007) CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 204, 489–495.
    1. Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW, Shulman Z, Hartmann T, Sixt M, Cyster JG & Alon R (2007) Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat Immunol 8, 1076–1085.
    1. Pham THM, Okada T, Matloubian M, Lo CG & Cyster JG (2008) S1P1 receptor signaling overrides retention mediated by G alpha i‐coupled receptors to promote T cell egress. Immunity 28, 122–133.
    1. Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M, Hay JB & Butcher EC (2005) Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 6, 889–894.
    1. Bromley SK, Thomas SY & Luster AD (2005) Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 6, 895–901.
    1. Vaahtomeri K, Brown M, Hauschild R, de Vries I, Leithner AF, Mehling M, Kaufmann WA & Sixt M (2017) Locally triggered release of the chemokine CCL21 promotes dendritic cell transmigration across lymphatic endothelia. Cell Rep 19, 902–909.
    1. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angeli V & Shakhar G (2011) DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 208, 2141–2153.
    1. Russo E, Teijeira A, Vaahtomeri K, Willrodt A‐H, Bloch JS, Nitschké M, Santambrogio L, Kerjaschki D, Sixt M & Halin C (2016) Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. Cell Rep 14, 1723–1734.
    1. Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bölter J, Münk A & Förster R (2011) Afferent lymph‐derived T cells and DCs use different chemokine receptor CCR7‐dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 15, 623–630.
    1. Serbina NV & Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7, 311–317.
    1. Humbles AA, Lu B, Friend DS, Okinaga S, Lora J, Al‐Garawi A, Martin TR, Gerard NP & Gerard C (2002) The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen‐induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci USA 99, 1479–1484.
    1. Eash KJ, Greenbaum AM, Gopalan PK & Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120, 2423–2431.
    1. Martin C, Burdon PCE, Bridger G, Gutierrez‐Ramos JC, Williams TJ & Rankin SM (2003) Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593.
    1. Auffray C, Fogg D, Garfa M, Elain G, Join‐Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G & Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670.
    1. Wendland M, Czeloth N, Mach N, Malissen B, Kremmer E, Pabst O & Förster R (2007) CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc Natl Acad Sci USA 104, 6347–6352.
    1. Cinamon G, Zachariah MA, Lam OM, Foss FW & Cyster JG (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9, 54–62.
    1. Ansel KM, Harris RBS & Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16, 67–76.
    1. Griffith JW, Sokol CL & Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32, 659–702.
    1. Lim K, Hyun Y‐M, Lambert‐Emo K, Capece T, Bae S, Miller R, Topham DJ & Kim M (2015) Neutrophil trails guide influenza‐specific CD8⁺ T cells in the airways. Science 349, aaa4352.
    1. Thanabalasuriar A, Neupane AS, Wang J, Krummel MF & Kubes P (2016) iNKT cell emigration out of the lung vasculature requires neutrophils and monocyte‐derived dendritic cells in inflammation. Cell Rep 16, 3260–3272.
    1. Asquith DL, Bryce SA & Nibbs RJB (2015) Targeting cell migration in rheumatoid arthritis. Curr Opin Rheumatol 27, 204–211.
    1. Cheng W & Chen G (2014) Chemokines and chemokine receptors in multiple sclerosis. Mediators Inflamm 2014, 659206.
    1. Singh TP, Lee CH & Farber JM (2013) Chemokine receptors in psoriasis. Expert Opin Ther Targets 17, 1405–1422.
    1. Castan L, Magnan A & Bouchaud G (2017) Chemokine receptors in allergic diseases. Allergy 72, 682–690.
    1. Le Thuc O, Blondeau N, Nahon J‐L & Rovère C (2015) The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects. Ann N Y Acad Sci 1351, 127–140.
    1. Nishimura M, Kuboi Y, Muramoto K, Kawano T & Imai T (2009) Chemokines as novel therapeutic targets for inflammatory bowel disease. Ann N Y Acad Sci 1173, 350–356.
    1. van der Vorst EPC, Döring Y & Weber C (2015) Chemokines. Arteriosclero Thromb Vasc Biol 35, e52–e56.
    1. Nagarsheth N, Wicha MS & Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17, 559–572.
    1. Schall TJ & Proudfoot AEI (2011) Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 11, 355–363.
    1. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Aït‐Yahia S, Briere F, Zlotnik A, Lebecque S & Caux C (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188, 373–386.
    1. Sozzani S, Allavena P, D'Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R & Mantovani A (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161, 1083–1086.
    1. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S & Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28, 2760–2769.
    1. Molon B, Gri G, Bettella M, Gómez‐Moutón C, Lanzavecchia A, Martínez‐A C, Mañes S & Viola A (2005) T cell costimulation by chemokine receptors. Nat Immunol 6, 465–471.
    1. Contento RL, Molon B, Boularan C, Pozzan T, Mañes S, Marullo S & Viola A (2008) CXCR4‐CCR5: a couple modulating T cell functions. Proc Natl Acad Sci USA 105, 10101–10106.
    1. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204, 1849–1861.
    1. Singh SP, Zhang HH, Foley JF, Hedrick MN & Farber JM (2008) Human T cells that are able to produce IL‐17 express the chemokine receptor CCR6. J Immunol 180, 214–221.
    1. Sallusto F, Mackay CR & Lanzavecchia A (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007.
    1. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A et al (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187, 129–134.
    1. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C & Dayer JM (1998) CCR5 is characteristic of Th1 lymphocytes. Nature 391, 344–345.
    1. Sallusto F, Lenig D, Mackay CR & Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187, 875–883.
    1. Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L & Butcher EC (2001) Rules of chemokine receptor association with T cell polarization in vivo. J Clin Invest 108, 1331–1339.
    1. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M & Förster R (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192, 1545–1552.
    1. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P & Moser B (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192, 1553–1562.
    1. Kim CH, Rott LS, Clark‐Lewis I, Campbell DJ, Wu L & Butcher EC (2001) Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center‐localized subset of CXCR5+ T cells. J Exp Med 193, 1373–1381.
    1. Vaeth M, Müller G, Stauss D, Dietz L, Klein‐Hessling S, Serfling E, Lipp M, Berberich I & Berberich‐Siebelt F (2014) Follicular regulatory T cells control humoral autoimmunity via NFAT2‐regulated CXCR5 expression. J Exp Med 211, 545–561.
    1. Vinuesa CG, Linterman MA, Yu D & MacLennan ICM (2016) Follicular helper T cells. Annu Rev Immunol 34, 335–368.
    1. Sage PT & Sharpe AH (2016) T follicular regulatory cells. Immunol Rev 271, 246–259.
    1. Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, Minnich M, Meckiff BJ, Wei Y, Hou Z et al (2016) CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol 17, 1187–1196.
    1. Svensson M, Marsal J, Ericsson A, Carramolino L, Brodén T, Márquez G & Agace WW (2002) CCL25 mediates the localization of recently activated CD8alphabeta(+) lymphocytes to the small‐intestinal mucosa. J Clin Invest 110, 1113–1121.
    1. Stenstad H, Ericsson A, Johansson‐Lindbom B, Svensson M, Marsal J, Mack M, Picarella D, Soler D, Márquez G, Briskin M et al (2006) Gut‐associated lymphoid tissue‐primed CD4+ T cells display CCR9‐dependent and ‐independent homing to the small intestine. Blood 107, 3447–3454.
    1. Stenstad H, Svensson M, Cucak H, Kotarsky K & Agace WW (2007) Differential homing mechanisms regulate regionalized effector CD8alphabeta+ T cell accumulation within the small intestine. Proc Natl Acad Sci USA 104, 10122–10127.
    1. Johansson‐Lindbom B & Agace WW (2007) Generation of gut‐homing T cells and their localization to the small intestinal mucosa. Immunol Rev 215, 226–242.
    1. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M & von Andrian UH (2003) Selective imprinting of gut‐homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93.
    1. Johansson‐Lindbom B, Svensson M, Wurbel M‐A, Malissen B, Márquez G & Agace W (2003) Selective generation of gut tropic T cells in gut‐associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med 198, 963–969.
    1. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C & Song S‐Y (2004) Retinoic acid imprints gut‐homing specificity on T cells. Immunity 21, 527–538.
    1. Johansson‐Lindbom B, Svensson M, Pabst O, Palmqvist C, Márquez G, Förster R & Agace WW (2005) Functional specialization of gut CD103+ dendritic cells in the regulation of tissue‐selective T cell homing. J Exp Med 202, 1063–1073.
    1. Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Förster R & Pabst O (2008) Stromal mesenteric lymph node cells are essential for the generation of gut‐homing T cells in vivo. J Exp Med 205, 2483–2490.
    1. Reiss Y, Proudfoot AE, Power CA, Campbell JJ & Butcher EC (2001) CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell‐attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 194, 1541–1547.
    1. Kunkel EJ & Butcher EC (2002) Chemokines and the tissue‐specific migration of lymphocytes. Immunity 16, 1–4.
    1. Schaerli P, Ebert L, Willimann K, Blaser A, Roos RS, Loetscher P & Moser B (2004) A skin‐selective homing mechanism for human immune surveillance T cells. J Exp Med 199, 1265–1275.
    1. Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D & Butcher EC (2007) DCs metabolize sunlight‐induced vitamin D3 to “program” T cell attraction to the epidermal chemokine CCL27. Nat Immunol 8, 285–293.
    1. McCully ML, Ladell K, Hakobyan S, Mansel RE, Price DA & Moser B (2012) Epidermis instructs skin homing receptor expression in human T cells. Blood 120, 4591–4598.
    1. Sallusto F, Lenig D, Förster R, Lipp M & Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712.
    1. Gerlach C, Moseman EA, Loughhead SM, Alvarez D, Zwijnenburg AJ, Waanders L, Garg R, de la Torre JC & von Andrian UH (2016) The chemokine receptor CX3CR1 defines three antigen‐experienced CD8T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284.
    1. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Förster R & Cyster JG (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B‐cell position. Nature 416, 94–99.
    1. Allen CDC, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N & Cyster JG (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5, 943–952.
    1. Allen CDC, Okada T & Cyster JG (2007) Germinal‐center organization and cellular dynamics. Immunity 27, 190–202.
    1. Suan D, Kräutler NJ, Maag JLV, Butt D, Bourne K, Hermes JR, Avery DT, Young C, Statham A, Elliott M et al (2017) CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light‐zone location and predominant low antigen affinity. Immunity 47 (1142–1153), e4.
    1. Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G, Zou YR, Littman DR & Cyster JG (2001) A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 194, 45–56.
    1. Cyster JG (2003) Homing of antibody secreting cells. Immunol Rev 194, 48–60.
    1. Hu S, Yang K, Yang J, Li M & Xiong N (2011) Critical roles of chemokine receptor CCR10 in regulating memory IgA responses in intestines. Proc Natl Acad Sci USA 108, E1035–E1044.
    1. Pabst O, Ohl L, Wendland M, Wurbel M‐A, Kremmer E, Malissen B & Förster R (2004) Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med 199, 411–416.
    1. Hieshima K, Kawasaki Y, Hanamoto H, Nakayama T, Nagakubo D, Kanamaru A & Yoshie O (2004) CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody‐secreting cells. J Immunol 173, 3668–3675.
    1. Wilson E & Butcher EC (2004) CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med 200, 805–809.
    1. Morteau O, Gerard C, Lu B, Ghiran S, Rits M, Fujiwara Y, Law Y, Distelhorst K, Nielsen EM, Hill ED et al (2008) An indispensable role for the chemokine receptor CCR10 in IgA antibody‐secreting cell accumulation. J Immunol 181, 6309–6315.
    1. Mora JR & von Andrian UH (2008) Differentiation and homing of IgA‐secreting cells. Mucosal Immunol 1, 96–109.
    1. Collins PJ, McCully ML, Martínez‐Muñoz L, Santiago C, Wheeldon J, Caucheteux S, Thelen S, Cecchinato V, Laufer JM, Purvanov V et al (2017) Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J 31, 3084–3097.
    1. Alampour‐Rajabi S, El Bounkari O, Rot A, Müller‐Newen G, Bachelerie F, Gawaz M, Weber C, Schober A & Bernhagen J (2015) MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP‐70 signaling, and lymphocyte chemotaxis. FASEB J 29, 4497–4511.
    1. Smith N, Pietrancosta N, Davidson S, Dutrieux J, Chauveau L, Cutolo P, Dy M, Scott‐Algara D, Manoury B, Zirafi O et al (2017) Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun 8, 14253.
    1. Pei X, Sun Q, Zhang Y, Wang P, Peng X, Guo C, Xu E, Zheng Y, Mo X, Ma J et al (2014) PC3‐secreted microprotein is a novel chemoattractant protein and functions as a high‐affinity ligand for CC chemokine receptor 2. J Immunol 192, 1878–1886.
    1. Ignatov A, Robert J, Gregory‐Evans C & Schaller HC (2006) RANTES stimulates Ca2+ mobilization and inositol trisphosphate (IP3) formation in cells transfected with G protein‐coupled receptor 75. Br J Pharmacol 149, 490–497.
    1. Makita S & Tobinai K (2017) Mogamulizumab for the treatment of T‐cell lymphoma. Expert Opin Biol Ther 17, 1145–1153.
    1. Rot A & von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22, 891–928.
    1. Heng TSP, Painter MW & Consortium IGP (2008) The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 9, 1091–1094.

Source: PubMed

3
Předplatit