Implications of Angiogenesis Involvement in Arthritis

Iona J MacDonald, Shan-Chi Liu, Chen-Ming Su, Yu-Han Wang, Chun-Hao Tsai, Chih-Hsin Tang, Iona J MacDonald, Shan-Chi Liu, Chen-Ming Su, Yu-Han Wang, Chun-Hao Tsai, Chih-Hsin Tang

Abstract

Angiogenesis, the growth of new blood vessels, is essential in the pathogenesis of joint inflammatory disorders such as rheumatoid arthritis (RA) and osteoarthritis (OA), facilitating the invasion of inflammatory cells and increase in local pain receptors that contribute to structural damage and pain. The angiogenic process is perpetuated by various mediators such as growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIFs), as well as proinflammatory cytokines, various chemokines, matrix components, cell adhesion molecules, proteases, and others. Despite the development of potent, well-tolerated nonbiologic (conventional) and biologic disease-modifying agents that have greatly improved outcomes for patients with RA, many remain resistant to these therapies, are only partial responders, or cannot tolerate biologics. The only approved therapies for OA include symptom-modifying agents, such as analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), steroids, and hyaluronic acid. None of the available treatments slow the disease progression, restore the original structure or enable a return to function of the damaged joint. Moreover, a number of safety concerns surround current therapies for RA and OA. New treatments are needed that not only target inflamed joints and control articular inflammation in RA and OA, but also selectively inhibit synovial angiogenesis, while preventing healthy tissue damage. This narrative review of the literature in PubMed focuses on the evidence illustrating the therapeutic benefits of modulating angiogenic activity in experimental RA and OA. This evidence points to new treatment targets in these diseases.

Keywords: angiogenesis; chemokines; cytokines; osteoarthritis; rheumatoid arthritis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
An illustration of the proinflammatory process underlying rheumatoid arthritis (RA) angiogenesis in synovial fluid. Inflammatory stimulation activates RA osteoblasts and synovial fibroblasts that in turn modulate the expression of growth factors, Toll-like receptors, chemokine receptors, cytokines, matrix metalloproteinases (MMPs) and other mediators that are involved at different stages of angiogenesis. Recruitment of macrophages and T cells from the blood into the inflammatory process ensure the maintenance and progression of angiogenesis.
Figure 2
Figure 2
Specific mechanisms underlying angiogenesis in OA. Chronic, low-grade inflammation in OA is driven by increased expression of pro-angiogenic factors including chemokine receptors, cytokines, growth factors, and other mediators such as advanced glycation end-products (AGEs) and Dickkopf-1 (Dkk-1) entering the synovial fluid, enabling them to erode cartilage and subchondral bone.

References

    1. McInnes I.B., Schett G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011;365:2205–2219. doi: 10.1056/NEJMra1004965.
    1. Zhang W., Ouyang H., Dass C.R., Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016;4:15040. doi: 10.1038/boneres.2015.40.
    1. Wehling P., Evans C., Wehling J., Maixner W. Effectiveness of intra-articular therapies in osteoarthritis: A literature review. Ther. Adv. Musculoskelet. Dis. 2017;9:183–196. doi: 10.1177/1759720X17712695.
    1. Emery P. Optimizing outcomes in patients with rheumatoid arthritis and an inadequate response to anti-tnf treatment. Rheumatology. 2012;51(Suppl. 5):v22–v30. doi: 10.1093/rheumatology/kes115.
    1. Kihara M., Davies R., Kearsley-Fleet L., Watson K.D., Lunt M., Symmons D.P., Hyrich K.L. Use and effectiveness of tocilizumab among patients with rheumatoid arthritis: An observational study from the british society for rheumatology biologics register for rheumatoid arthritis. Clin. Rheumatol. 2017;36:241–250. doi: 10.1007/s10067-016-3485-5.
    1. Jones G., Nash P., Hall S. Advances in rheumatoid arthritis. Med. J. Aust. 2017;206:221–224. doi: 10.5694/mja16.01287.
    1. Wijbrandts C.A., Tak P.P. Prediction of response to targeted treatment in rheumatoid arthritis. Mayo Clin. Proc. 2017;92:1129–1143. doi: 10.1016/j.mayocp.2017.05.009.
    1. Castaneda O.M., Romero F.J., Salinas A., Citera G., Mysler E., Rillo O., Radominski S.C., Cardiel M.H., Jaller J.J., Alvarez-Moreno C., et al. Safety of tofacitinib in the treatment of rheumatoid arthritis in latin america compared with the rest of the world population. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2017;23:193–199. doi: 10.1097/RHU.0000000000000498.
    1. Barclay N., Tarallo M., Hendrikx T., Marett S. Patient preference for oral versus injectable and intravenous methods of treatment for rheumatoid arthritis. Value Health. 2013;16:A568. doi: 10.1016/j.jval.2013.08.1521.
    1. Elshabrawy H.A., Chen Z., Volin M.V., Ravella S., Virupannavar S., Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015;18:433–448. doi: 10.1007/s10456-015-9477-2.
    1. Moon S.J., Park M.K., Oh H.J., Lee S.Y., Kwok S.K., Cho M.L., Ju J.H., Park K.S., Kim H.Y., Park S.H. Engagement of toll-like receptor 3 induces vascular endothelial growth factor and interleukin-8 in human rheumatoid synovial fibroblasts. Korean J. Intern. Med. 2010;25:429–435. doi: 10.3904/kjim.2010.25.4.429.
    1. Saber T., Veale D.J., Balogh E., McCormick J., NicAnUltaigh S., Connolly M., Fearon U. Toll-like receptor 2 induced angiogenesis and invasion is mediated through the tie2 signalling pathway in rheumatoid arthritis. PLoS ONE. 2011;6:e23540. doi: 10.1371/journal.pone.0023540.
    1. Miyake K., Nishida K., Kadota Y., Yamasaki H., Nasu T., Saitou D., Tanabe K., Sonoda H., Sato Y., Maeshima Y., et al. Inflammatory cytokine-induced expression of vasohibin-1 by rheumatoid synovial fibroblasts. Acta Med. Okayama. 2009;63:349–358.
    1. Manabe H., Nasu Y., Komiyama T., Furumatsu T., Kitamura A., Miyazawa S., Ninomiya Y., Ozaki T., Asahara H., Nishida K. Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. 2008;57:4–10. doi: 10.1007/s00011-007-7036-z.
    1. Brahn E., Banquerigo M.L., Lee J.K., Park E.J., Fogler W.E., Plum S.M. An angiogenesis inhibitor, 2-methoxyestradiol, involutes rat collagen-induced arthritis and suppresses gene expression of synovial vascular endothelial growth factor and basic fibroblast growth factor. J. Rheumatol. 2008;35:2119–2128. doi: 10.3899/jrheum.080302.
    1. Hashizume M., Hayakawa N., Suzuki M., Mihara M. Il-6/sil-6r trans-signalling, but not tnf-alpha induced angiogenesis in a huvec and synovial cell co-culture system. Rheumatol. Int. 2009;29:1449–1454. doi: 10.1007/s00296-009-0885-8.
    1. Moran E.M., Connolly M., Gao W., McCormick J., Fearon U., Veale D.J. Interleukin-17a induction of angiogenesis, cell migration, and cytoskeletal rearrangement. Arthritis Rheum. 2011;63:3263–3273. doi: 10.1002/art.30582.
    1. Amin M.A., Rabquer B.J., Mansfield P.J., Ruth J.H., Marotte H., Haas C.S., Reamer E.N., Koch A.E. Interleukin 18 induces angiogenesis in vitro and in vivo via src and jnk kinases. Ann. Rheum. Dis. 2010;69:2204–2212. doi: 10.1136/ard.2009.127241.
    1. Kobori T., Hamasaki S., Kitaura A., Yamazaki Y., Nishinaka T., Niwa A., Nakao S., Wake H., Mori S., Yoshino T., et al. Interleukin-18 amplifies macrophage polarization and morphological alteration, leading to excessive angiogenesis. Front. Immunol. 2018;9:334. doi: 10.3389/fimmu.2018.00334.
    1. Elshabrawy H.A., Volin M.V., Essani A.B., Chen Z., McInnes I.B., Van Raemdonck K., Palasiewicz K., Arami S., Gonzalez M., Ashour H.M., et al. Il-11 facilitates a novel connection between ra joint fibroblasts and endothelial cells. Angiogenesis. 2018;21:215–228. doi: 10.1007/s10456-017-9589-y.
    1. Connolly M., Marrelli A., Blades M., McCormick J., Maderna P., Godson C., Mullan R., FitzGerald O., Bresnihan B., Pitzalis C., et al. Acute serum amyloid a induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/scid mouse chimera model. J. Immunol. 2010;184:6427–6437. doi: 10.4049/jimmunol.0902941.
    1. Su C.M., Hsu C.J., Tsai C.H., Huang C.Y., Wang S.W., Tang C.H. Resistin promotes angiogenesis in endothelial progenitor cells through inhibition of microrna206: Potential implications for rheumatoid arthritis. Stem Cells. 2015;33:2243–2255. doi: 10.1002/stem.2024.
    1. Sun X., Wei J., Tang Y., Wang B., Zhang Y., Shi L., Guo J., Hu F., Li X. Leptin-induced migration and angiogenesis in rheumatoid arthritis is mediated by reactive oxygen species. FEBS Open Bio. 2017;7:1899–1908. doi: 10.1002/2211-5463.12326.
    1. Chien S.Y., Huang C.Y., Tsai C.H., Wang S.W., Lin Y.M., Tang C.H. Interleukin-1beta induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes. Clin. Sci. 2016;130:667–681. doi: 10.1042/CS20150622.
    1. del Rey M.J., Izquierdo E., Caja S., Usategui A., Santiago B., Galindo M., Pablos J.L. Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1alpha/vascular endothelial growth factor-mediated pathway in immunodeficient mice. Arthritis Rheum. 2009;60:2926–2934. doi: 10.1002/art.24844.
    1. Ansboro S., Roelofs A.J., De Bari C. Mesenchymal stem cells for the management of rheumatoid arthritis: Immune modulation, repair or both? Curr. Opin. Rheumatol. 2017;29:201–207. doi: 10.1097/BOR.0000000000000370.
    1. Akhavani M.A., Madden L., Buysschaert I., Sivakumar B., Kang N., Paleolog E.M. Hypoxia upregulates angiogenesis and synovial cell migration in rheumatoid arthritis. Arthritis Res. Ther. 2009;11:R64. doi: 10.1186/ar2689.
    1. Zhang X., Liu J., Wan L., Sun Y., Wang F., Qi Y., Huang C. Up-regulated expressions of hif-1alpha, vegf and cd34 promote synovial angiogenesis in rats with adjuvant arthritis. Chin. J. Cell. Mol. Immunol. 2015;31:1053–1056.
    1. Nam Y., Jung S.M., Rim Y.A., Jung H., Lee K., Park N., Kim J., Jang Y., Park Y.B., Park S.H., et al. Intraperitoneal infusion of mesenchymal stem cell attenuates severity of collagen antibody induced arthritis. PLoS ONE. 2018;13:e0198740. doi: 10.1371/journal.pone.0198740.
    1. Bao C.X., Chen H.X., Mou X.J., Zhu X.K., Zhao Q., Wang X.G. Gzmb gene silencing confers protection against synovial tissue hyperplasia and articular cartilage tissue injury in rheumatoid arthritis through the mapk signaling pathway. Biomed. Pharmacother. 2018;103:346–354. doi: 10.1016/j.biopha.2018.04.023.
    1. O'Brien M.J., Shu Q., Stinson W.A., Tsou P.S., Ruth J.H., Isozaki T., Campbell P.L., Ohara R.A., Koch A.E., Fox D.A., et al. A unique role for galectin-9 in angiogenesis and inflammatory arthritis. Arthritis Res. Ther. 2018;20:31. doi: 10.1186/s13075-018-1519-x.
    1. Bruhl H., Mack M., Niedermeier M., Lochbaum D., Scholmerich J., Straub R.H. Functional expression of the chemokine receptor ccr7 on fibroblast-like synoviocytes. Rheumatology. 2008;47:1771–1774. doi: 10.1093/rheumatology/ken383.
    1. Wengner A.M., Hopken U.E., Petrow P.K., Hartmann S., Schurigt U., Brauer R., Lipp M. Cxcr5- and ccr7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum. 2007;56:3271–3283. doi: 10.1002/art.22939.
    1. Chen Z., Kim S.J., Essani A.B., Volin M.V., Vila O.M., Swedler W., Arami S., Volkov S., Sardin L.V., Sweiss N., et al. Characterising the expression and function of ccl28 and its corresponding receptor, ccr10, in ra pathogenesis. Ann. Rheum. Dis. 2015;74:1898–1906. doi: 10.1136/annrheumdis-2013-204530.
    1. Pickens S.R., Chamberlain N.D., Volin M.V., Pope R.M., Mandelin A.M., 2nd, Shahrara S. Characterization of ccl19 and ccl21 in rheumatoid arthritis. Arthritis Rheum. 2011;63:914–922. doi: 10.1002/art.30232.
    1. Wang C.H., Yao H., Chen L.N., Jia J.F., Wang L., Dai J.Y., Zheng Z.H., Chen Z.N., Zhu P. Cd147 induces angiogenesis through a vascular endothelial growth factor and hypoxia-inducible transcription factor 1alpha-mediated pathway in rheumatoid arthritis. Arthritis Rheum. 2012;64:1818–1827. doi: 10.1002/art.34341.
    1. Zong J., Li Y., Du D., Liu Y., Yin Y. Cd147 induces up-regulation of vascular endothelial growth factor in u937-derived foam cells through pi3k/akt pathway. Arch. Biochem. Biophys. 2016;609:31–38. doi: 10.1016/j.abb.2016.09.001.
    1. Isozaki T., Rabquer B.J., Ruth J.H., Haines G.K., 3rd, Koch A.E. Adam-10 is overexpressed in rheumatoid arthritis synovial tissue and mediates angiogenesis. Arthritis Rheum. 2013;65:98–108. doi: 10.1002/art.37755.
    1. Pan R., Dai Y., Gao X., Xia Y. Scopolin isolated from erycibe obtusifolia benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. Int. Immunopharmacol. 2009;9:859–869. doi: 10.1016/j.intimp.2009.02.019.
    1. Deng Q., Bai S., Gao W., Tong L. Pristimerin inhibits angiogenesis in adjuvant-induced arthritic rats by suppressing vegfr2 signaling pathways. Int. Immunopharmacol. 2015;29:302–313. doi: 10.1016/j.intimp.2015.11.001.
    1. Shankar J., Thippegowda P.B., Kanum S.A. Inhibition of hif-1alpha activity by bp-1 ameliorates adjuvant induced arthritis in rats. Biochem. Biophys. Res. Commun. 2009;387:223–228. doi: 10.1016/j.bbrc.2009.01.086.
    1. Jiang H., Wang L., Wang F., Pan J. Proprotein convertase subtilisin/kexin type 6 promotes in vitro proliferation, migration and inflammatory cytokine secretion of synovial fibroblastlike cells from rheumatoid arthritis via nuclearkappab, signal transducer and activator of transcription 3 and extracellular signal regulated 1/2 pathways. Mol. Med. Rep. 2017;16:8477–8484.
    1. Wang F., Wan J., Li Q., Zhang M., Wan Q., Ji C., Li H., Liu R., Han M. Lysyl oxidase is involved in synovial hyperplasia and angiogenesis in rats with collageninduced arthritis. Mol. Med. Rep. 2017;16:6736–6742. doi: 10.3892/mmr.2017.7436.
    1. Ding H., Hong C., Wang Y., Liu J., Zhang N., Shen C., Wei W., Zheng F. Calreticulin promotes angiogenesis via activating nitric oxide signalling pathway in rheumatoid arthritis. Clin. Exp. Immunol. 2014;178:236–244. doi: 10.1111/cei.12411.
    1. Li T.M., Liu S.C., Huang Y.H., Huang C.C., Hsu C.J., Tsai C.H., Wang S.W., Tang C.H. Ykl-40-induced inhibition of mir-590-3p promotes interleukin-18 expression and angiogenesis of endothelial progenitor cells. Int. J. Mol. Sci. 2017;18:920. doi: 10.3390/ijms18050920.
    1. Chen C.Y., Su C.M., Hsu C.J., Huang C.C., Wang S.W., Liu S.C., Chen W.C., Fuh L.J., Tang C.H. Ccn1 promotes vegf production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting mir-126 expression in rheumatoid arthritis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017;32:34–45. doi: 10.1002/jbmr.2926.
    1. Yi J., Zhu Y., Jia Y., Jiang H., Zheng X., Liu D., Gao S., Sun M., Hu B., Jiao B., et al. The annexin a2 promotes development in arthritis through neovascularization by amplification hedgehog pathway. PLoS ONE. 2016;11:e0150363. doi: 10.1371/journal.pone.0150363.
    1. Robinson W.H., Lepus C.M., Wang Q., Raghu H., Mao R., Lindstrom T.M., Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016;12:580–592. doi: 10.1038/nrrheum.2016.136.
    1. Lazzerini P.E., Capecchi P.L., Laghi-Pasini F. Systemic inflammation and arrhythmic risk: Lessons from rheumatoid arthritis. Eur. Heart J. 2017;38:1717–1727. doi: 10.1093/eurheartj/ehw208.
    1. Liu S.C., Chuang S.M., Hsu C.J., Tsai C.H., Wang S.W., Tang C.H. Ctgf increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing mir-210 expression. Cell Death Dis. 2014;5:e1485. doi: 10.1038/cddis.2014.453.
    1. Lin Y.M., Huang Y.L., Fong Y.C., Tsai C.H., Chou M.C., Tang C.H. Hepatocyte growth factor increases vascular endothelial growth factor-a production in human synovial fibroblasts through c-met receptor pathway. PLoS ONE. 2012;7:e50924. doi: 10.1371/journal.pone.0050924.
    1. Weng L.H., Ko J.Y., Wang C.J., Sun Y.C., Wang F.S. Dkk-1 promotes angiogenic responses and cartilage matrix proteinase secretion in synovial fibroblasts from osteoarthritic joints. Arthritis Rheum. 2012;64:3267–3277. doi: 10.1002/art.34602.
    1. Chen Y.J., Chan D.C., Chiang C.K., Wang C.C., Yang T.H., Lan K.C., Chao S.C., Tsai K.S., Yang R.S., Liu S.H. Advanced glycation end-products induced vegf production and inflammatory responses in human synoviocytes via rage-nf-kappab pathway activation. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2016;34:791–800. doi: 10.1002/jor.23083.
    1. Tsai C.H., Chiang Y.C., Chen H.T., Huang P.H., Hsu H.C., Tang C.H. High glucose induces vascular endothelial growth factor production in human synovial fibroblasts through reactive oxygen species generation. Biochim. Biophys. Acta. 2013;1830:2649–2658. doi: 10.1016/j.bbagen.2012.12.017.
    1. Chen J.L., Zou C., Chen Y., Zhu W., Liu W., Huang J., Liu Q., Wang D., Duan L., Xiong J., et al. Tgfbeta1 induces hypertrophic change and expression of angiogenic factors in human chondrocytes. Oncotarget. 2017;8:91316–91327.
    1. Deng B., Chen C., Gong X., Guo L., Chen H., Yin L., Yang L., Wang F. Chondromodulini expression and correlation with angiogenesis in human osteoarthritic cartilage. Mol. Med. Rep. 2017;16:2142–2148. doi: 10.3892/mmr.2017.6775.
    1. Walsh D.A., McWilliams D.F., Turley M.J., Dixon M.R., Franses R.E., Mapp P.I., Wilson D. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology. 2010;49:1852–1861. doi: 10.1093/rheumatology/keq188.
    1. Ashraf S., Wibberley H., Mapp P.I., Hill R., Wilson D., Walsh D.A. Increased vascular penetration and nerve growth in the meniscus: A potential source of pain in osteoarthritis. Ann. Rheum. Dis. 2011;70:523–529. doi: 10.1136/ard.2010.137844.
    1. Wang Y., Xu J., Zhang X., Wang C., Huang Y., Dai K. Tnf-alpha-induced lrg1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 2017;8:e2715. doi: 10.1038/cddis.2017.129.
    1. Kuyinu E.L., Narayanan G., Nair L.S., Laurencin C.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 2016;11:19. doi: 10.1186/s13018-016-0346-5.
    1. Chen Z.W., Chen Y.Q. Effects of yanghe decoction on vascular endothelial growth factor in cartilage cells of osteoarthritis rabbits. J. Chin. Integr. Med. 2008;6:372–375. doi: 10.3736/jcim20080409.
    1. Richardson P.G., Schlossman R.L., Weller E., Hideshima T., Mitsiades C., Davies F., LeBlanc R., Catley L.P., Doss D., Kelly K., et al. Immunomodulatory drug cc-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002;100:3063–3067. doi: 10.1182/blood-2002-03-0996.
    1. Davies F.E., Raje N., Hideshima T., Lentzsch S., Young G., Tai Y.T., Lin B., Podar K., Gupta D., Chauhan D., et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98:210–216. doi: 10.1182/blood.V98.1.210.
    1. Yang B., Yu R.L., Chi X.H., Lu X.C. Lenalidomide treatment for multiple myeloma: Systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2013;8:e64354. doi: 10.1371/journal.pone.0064354.
    1. Bridoux F., Chen N., Moreau S., Arnulf B., Moumas E., Abraham J., Desport E., Jaccard A., Fermand J.P. Pharmacokinetics, safety, and efficacy of lenalidomide plus dexamethasone in patients with multiple myeloma and renal impairment. Cancer Chemother. Pharmacol. 2016;78:173–182. doi: 10.1007/s00280-016-3068-9.
    1. Leuci V., Maione F., Rotolo R., Giraudo E., Sassi F., Migliardi G., Todorovic M., Gammaitoni L., Mesiano G., Giraudo L., et al. Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity. J. Transl. Med. 2016;14:119. doi: 10.1186/s12967-016-0872-2.
    1. Luz-Crawford P., Ipseiz N., Espinosa-Carrasco G., Caicedo A., Tejedor G., Toupet K., Loriau J., Scholtysek C., Stoll C., Khoury M., et al. Pparbeta/delta directs the therapeutic potential of mesenchymal stem cells in arthritis. Ann. Rheum. Dis. 2016;75:2166–2174. doi: 10.1136/annrheumdis-2015-208696.
    1. Dold A.P., Zywiel M.G., Taylor D.W., Dwyer T., Theodoropoulos J. Platelet-rich plasma in the management of articular cartilage pathology: A systematic review. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2014;24:31–43. doi: 10.1097/01.jsm.0000432855.85143.e5.
    1. Tong S., Zhang C., Liu J. Platelet-rich plasma exhibits beneficial effects for rheumatoid arthritis mice by suppressing inflammatory factors. Mol. Med. Rep. 2017;16:4082–4088. doi: 10.3892/mmr.2017.7091.

Source: PubMed

3
Předplatit